Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates

Squeezed states, special kinds of entangled states, are known as a useful resource for quantum metrology. In interferometric sensors, they allow us to overcome the ‘classical’ projection noise limit stemming from the independent nature of the individual photons or atoms within the interferometer. Mo...

Full description

Saved in:
Bibliographic Details
Main Author: Gross, Christian (Author)
Format: Article (Journal)
Language:English
Published: 14 May 2012
In: Journal of physics. B, Atomic, molecular and optical physics
Year: 2012, Volume: 45, Issue: 10
ISSN:1361-6455
DOI:10.1088/0953-4075/45/10/103001
Online Access:Verlag, Volltext: http://dx.doi.org/10.1088/0953-4075/45/10/103001
Verlag, Volltext: http://stacks.iop.org/0953-4075/45/i=10/a=103001?key=crossref.1f2a7901e8014e814391a5146158237f
Get full text
Author Notes:Christian Gross
Description
Summary:Squeezed states, special kinds of entangled states, are known as a useful resource for quantum metrology. In interferometric sensors, they allow us to overcome the ‘classical’ projection noise limit stemming from the independent nature of the individual photons or atoms within the interferometer. Motivated by the potential impact on metrology as well as by fundamental questions in the context of entanglement, a lot of theoretical and experimental effort has been made to study squeezed states. The first squeezed states useful for quantum-enhanced metrology have been proposed and generated in quantum optics, where the squeezed variables are the coherences of the light field. In this tutorial, we focus on spin squeezing in atomic systems. We give an introduction to its concepts and discuss its generation in Bose-Einstein condensates. We discuss in detail the experimental requirements necessary for the generation and direct detection of coherent spin squeezing. Two exemplary experiments demonstrating adiabatically prepared spin squeezing based on motional degrees of freedom and diabatically realized spin squeezing based on internal hyperfine degrees of freedom are discussed.
Item Description:Gesehen am 04.06.2018
Physical Description:Online Resource
ISSN:1361-6455
DOI:10.1088/0953-4075/45/10/103001