On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification

Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Park...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pläschke, Rachel Nirmala (VerfasserIn) , Gruber, Oliver (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 September 2017
In: Human brain mapping
Year: 2017, Jahrgang: 38, Heft: 12, Pages: 5845-5858
ISSN:1097-0193
DOI:10.1002/hbm.23763
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1002/hbm.23763
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23763
Volltext
Verfasserangaben:Rachel N. Pläschke, Edna C. Cieslik, Veronika I. Müller, Felix Hoffstaedter, Anna Plachti, Deepthi P. Varikuti, Mareike Goosses, Anne Latz, Svenja Caspers, Christiane Jockwitz, Susanne Moebus, Oliver Gruber, Claudia R. Eickhoff, Kathrin Reetz, Julia Heller, Martin Südmeyer, Christian Mathys, Julian Caspers, Christian Grefkes, Tobias Kalenscher, Robert Langner, Simon B. Eickhoff

MARC

LEADER 00000caa a2200000 c 4500
001 1575979713
003 DE-627
005 20230427042923.0
007 cr uuu---uuuuu
008 180605s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/hbm.23763  |2 doi 
035 |a (DE-627)1575979713 
035 |a (DE-576)505979713 
035 |a (DE-599)BSZ505979713 
035 |a (OCoLC)1341010516 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Pläschke, Rachel Nirmala  |e VerfasserIn  |0 (DE-588)1160529884  |0 (DE-627)1023804972  |0 (DE-576)505979101  |4 aut 
245 1 0 |a On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age  |b Evidence from connectivity-based single-subject classification  |c Rachel N. Pläschke, Edna C. Cieslik, Veronika I. Müller, Felix Hoffstaedter, Anna Plachti, Deepthi P. Varikuti, Mareike Goosses, Anne Latz, Svenja Caspers, Christiane Jockwitz, Susanne Moebus, Oliver Gruber, Claudia R. Eickhoff, Kathrin Reetz, Julia Heller, Martin Südmeyer, Christian Mathys, Julian Caspers, Christian Grefkes, Tobias Kalenscher, Robert Langner, Simon B. Eickhoff 
264 1 |c 06 September 2017 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.06.2018 
520 |a Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. 
650 4 |a brain networks 
650 4 |a functional connectivity 
650 4 |a machine learning 
650 4 |a normal aging 
650 4 |a Parkinson's disease 
650 4 |a resting-state fMRI 
650 4 |a schizophrenia 
650 4 |a support vector machine 
700 1 |a Gruber, Oliver  |d 1968-  |e VerfasserIn  |0 (DE-588)121160793  |0 (DE-627)08112502X  |0 (DE-576)292563590  |4 aut 
773 0 8 |i Enthalten in  |t Human brain mapping  |d New York, NY : Wiley-Liss, 1993  |g 38(2017), 12, Seite 5845-5858  |h Online-Ressource  |w (DE-627)302922911  |w (DE-600)1492703-2  |w (DE-576)090855248  |x 1097-0193  |7 nnas  |a On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age Evidence from connectivity-based single-subject classification 
773 1 8 |g volume:38  |g year:2017  |g number:12  |g pages:5845-5858  |g extent:14  |a On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age Evidence from connectivity-based single-subject classification 
856 4 0 |u http://dx.doi.org/10.1002/hbm.23763  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23763  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180605 
993 |a Article 
994 |a 2017 
998 |g 121160793  |a Gruber, Oliver  |m 121160793:Gruber, Oliver  |d 910000  |d 910600  |e 910000PG121160793  |e 910600PG121160793  |k 0/910000/  |k 1/910000/910600/  |p 12 
999 |a KXP-PPN1575979713  |e 3011502889 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"subtitle":"Evidence from connectivity-based single-subject classification","title":"On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age","title_sort":"On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age"}],"person":[{"given":"Rachel Nirmala","role":"aut","display":"Pläschke, Rachel Nirmala","family":"Pläschke"},{"family":"Gruber","role":"aut","given":"Oliver","display":"Gruber, Oliver"}],"name":{"displayForm":["Rachel N. Pläschke, Edna C. Cieslik, Veronika I. Müller, Felix Hoffstaedter, Anna Plachti, Deepthi P. Varikuti, Mareike Goosses, Anne Latz, Svenja Caspers, Christiane Jockwitz, Susanne Moebus, Oliver Gruber, Claudia R. Eickhoff, Kathrin Reetz, Julia Heller, Martin Südmeyer, Christian Mathys, Julian Caspers, Christian Grefkes, Tobias Kalenscher, Robert Langner, Simon B. Eickhoff"]},"relHost":[{"recId":"302922911","origin":[{"publisherPlace":"New York, NY","dateIssuedDisp":"1993-","publisher":"Wiley-Liss","dateIssuedKey":"1993"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 11.10.05"],"id":{"doi":["10.1002/(ISSN)1097-0193"],"zdb":["1492703-2"],"issn":["1097-0193"],"eki":["302922911"]},"disp":"On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age Evidence from connectivity-based single-subject classificationHuman brain mapping","physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1993 -"],"language":["eng"],"part":{"year":"2017","text":"38(2017), 12, Seite 5845-5858","volume":"38","issue":"12","extent":"14","pages":"5845-5858"},"title":[{"title":"Human brain mapping","title_sort":"Human brain mapping"}]}],"note":["Gesehen am 05.06.2018"],"physDesc":[{"extent":"14 S."}],"id":{"eki":["1575979713"],"doi":["10.1002/hbm.23763"]},"recId":"1575979713","origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"06 September 2017"}],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a PLAESCHKERONTHEINTEG0620