The description of many-particle systems by the equations for a viscous, compressible, barotropic fluid

We consider many-particle systems with a Hamiltonian dynamics supplemented by a friction term. Both the interaction potential and the additional friction force are supposed to be long range in comparison with the typical distance between neighboring particles. It is shown that in a zero-temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Oelschläger, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1-Jan-2002
In: Mathematical models and methods in applied sciences (M 3 AS)
Year: 1995, Jahrgang: 5, Heft: 7, Pages: 887-922
ISSN:1793-6314
DOI:10.1142/S0218202595000486
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1142/S0218202595000486
Volltext
Verfasserangaben:Karl Oelschläger
Beschreibung
Zusammenfassung:We consider many-particle systems with a Hamiltonian dynamics supplemented by a friction term. Both the interaction potential and the additional friction force are supposed to be long range in comparison with the typical distance between neighboring particles. It is shown that in a zero-temperature situation the empirical processes of the positions and the velocities converge to solutions of the continuity equation and the compressible, barotropic Navier-Stokes equation, respectively, in the limit as the particle number tends to infinity.
Beschreibung:Online publication date: 1-Jan-2002
Gesehen am 08.06.2018
Beschreibung:Online Resource
ISSN:1793-6314
DOI:10.1142/S0218202595000486