Stress-diffusive regularizations of non-dissipative rate-type materials

We consider non-dissipative (elastic) rate-type material models that are derived within the Gibbs-potential-based thermodynamic framework. Since the absence of any dissipative mechanism in the model prevents us from establishing even a local-in-time existence result in two spatial dimensions for a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burczak, Jan (VerfasserIn) , Málek, Josef (VerfasserIn) , Minakowski, Piotr (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Discrete and continuous dynamical systems
Year: 2017, Jahrgang: 10, Heft: 6, Pages: 1233-1256
ISSN:1937-1179
DOI:10.3934/dcdss.2017067
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.3934/dcdss.2017067
Verlag, Volltext: http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14258
Volltext
Verfasserangaben:Jan Burczak, Josef Málek, Piotr Minakowski

MARC

LEADER 00000caa a2200000 c 4500
001 1576203778
003 DE-627
005 20220814160109.0
007 cr uuu---uuuuu
008 180608s2017 xx |||||o 00| ||eng c
035 |a (DE-627)1576203778 
035 |a (DE-576)506203778 
035 |a (DE-599)BSZ506203778 
035 |a (OCoLC)1341011332 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Burczak, Jan  |e VerfasserIn  |0 (DE-588)1160792011  |0 (DE-627)1024228452  |0 (DE-576)506203751  |4 aut 
245 1 0 |a Stress-diffusive regularizations of non-dissipative rate-type materials  |c Jan Burczak, Josef Málek, Piotr Minakowski 
264 1 |c 2017 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Revised February 2017 
500 |a Gesehen am 08.06.2018 
520 |a We consider non-dissipative (elastic) rate-type material models that are derived within the Gibbs-potential-based thermodynamic framework. Since the absence of any dissipative mechanism in the model prevents us from establishing even a local-in-time existence result in two spatial dimensions for a spatially periodic problem, we propose two regularisations. For such regularized problems we obtain well-posedness of the planar, spatially periodic problem. In contrast with existing results, we prove ours for a regularizing term present solely in the evolution equation for the stress. 
700 1 |a Málek, Josef  |d 1963-  |e VerfasserIn  |0 (DE-588)1055783105  |0 (DE-627)793826918  |0 (DE-576)411206400  |4 aut 
700 1 |a Minakowski, Piotr  |d 1986-  |e VerfasserIn  |0 (DE-588)1160791708  |0 (DE-627)1024228215  |0 (DE-576)506203506  |4 aut 
773 0 8 |i Enthalten in  |t Discrete and continuous dynamical systems  |d Springfield, Mo. : American Institute of Mathematical Sciences, 2008  |g 10(2017), 6, Seite 1233-1256  |h Online-Ressource  |w (DE-627)550214933  |w (DE-600)2396275-6  |w (DE-576)279448791  |x 1937-1179  |7 nnas  |a Stress-diffusive regularizations of non-dissipative rate-type materials 
773 1 8 |g volume:10  |g year:2017  |g number:6  |g pages:1233-1256  |g extent:24  |a Stress-diffusive regularizations of non-dissipative rate-type materials 
856 4 0 |u http://dx.doi.org/10.3934/dcdss.2017067  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14258  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180608 
993 |a Article 
994 |a 2017 
998 |g 1160791708  |a Minakowski, Piotr  |m 1160791708:Minakowski, Piotr  |d 700000  |d 708000  |e 700000PM1160791708  |e 708000PM1160791708  |k 0/700000/  |k 1/700000/708000/  |p 3  |y j 
999 |a KXP-PPN1576203778  |e 3012253904 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title_sort":"Discrete and continuous dynamical systems","title":"Discrete and continuous dynamical systems","subtitle":"DCDS"}],"pubHistory":["1.2008 -"],"titleAlt":[{"title":"Discrete and continuous dynamical systems / S"}],"part":{"extent":"24","volume":"10","text":"10(2017), 6, Seite 1233-1256","issue":"6","pages":"1233-1256","year":"2017"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Stress-diffusive regularizations of non-dissipative rate-type materialsDiscrete and continuous dynamical systems","note":["Fortsetzung der Druck-Ausgabe","Gesehen am 27.06.2024"],"recId":"550214933","language":["eng"],"origin":[{"publisher":"American Institute of Mathematical Sciences","dateIssuedKey":"2008","dateIssuedDisp":"2008-","publisherPlace":"Springfield, Mo."}],"id":{"eki":["550214933"],"zdb":["2396275-6"],"issn":["1937-1179"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"24 S."}],"name":{"displayForm":["Jan Burczak, Josef Málek, Piotr Minakowski"]},"id":{"eki":["1576203778"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"recId":"1576203778","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Revised February 2017","Gesehen am 08.06.2018"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Burczak, Jan","given":"Jan","family":"Burczak"},{"given":"Josef","family":"Málek","role":"aut","roleDisplay":"VerfasserIn","display":"Málek, Josef"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Minakowski, Piotr","given":"Piotr","family":"Minakowski"}],"title":[{"title_sort":"Stress-diffusive regularizations of non-dissipative rate-type materials","title":"Stress-diffusive regularizations of non-dissipative rate-type materials"}]} 
SRT |a BURCZAKJANSTRESSDIFF2017