Parameter estimation and optimum experimental design for differential equation models

This article reviews state-of-the-art methods for parameter estimation and optimum experimental design in optimization based modeling. For the calibration of differential equation models for nonlinear processes, constrained parameter estimation problems are considered. For their solution, numerical...

Full description

Saved in:
Bibliographic Details
Main Authors: Bock, Hans Georg (Author) , Körkel, Stefan (Author) , Schlöder, Johannes P. (Author)
Format: Chapter/Article Conference Paper
Language:English
Published: 2013
In: Model Based Parameter Estimation
Year: 2012, Pages: 1-30
DOI:10.1007/978-3-642-30367-8_1
Subjects:
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/978-3-642-30367-8_1
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-642-30367-8_1
Get full text
Author Notes:Hans Georg Bock, Stefan Körkel and Johannes P. Schlöder
Description
Summary:This article reviews state-of-the-art methods for parameter estimation and optimum experimental design in optimization based modeling. For the calibration of differential equation models for nonlinear processes, constrained parameter estimation problems are considered. For their solution, numerical methods based on the boundary value problem method optimization approach consisting of multiple shooting and a generalized Gauß-Newton method are discussed. To suggest experiments that deliver data to minimize the statistical uncertainty of parameter estimates, optimum experimental design problems are formulated, an intricate class of non-standard optimal control problems, and derivative-based methods for their solution are presented.
Item Description:First online: 03 August 2012
Gesehen am 15.06.2018
Physical Description:Online Resource
ISBN:9783642303678
1299336647
DOI:10.1007/978-3-642-30367-8_1