Adaptive nonparametric estimation in the presence of dependence

We consider nonparametric estimation problems in the presence of dependent data, notably nonparametric regression with random design and nonparametric density estimation. The proposed estimation procedure is based on a dimension reduction. The minimax optimal rate of convergence of the estimator is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Asin, Nicolas (VerfasserIn) , Johannes, Jan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Journal of nonparametric statistics
Year: 2017, Jahrgang: 29, Heft: 4, Pages: 694-730
ISSN:1029-0311
DOI:10.1080/10485252.2017.1367788
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1080/10485252.2017.1367788
Volltext
Verfasserangaben:Nicolas Asin, Jan Johannes

MARC

LEADER 00000caa a22000002c 4500
001 1576827631
003 DE-627
005 20220814173852.0
007 cr uuu---uuuuu
008 180625s2017 xx |||||o 00| ||eng c
024 7 |a 10.1080/10485252.2017.1367788  |2 doi 
035 |a (DE-627)1576827631 
035 |a (DE-576)506827631 
035 |a (DE-599)BSZ506827631 
035 |a (OCoLC)1341012830 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Asin, Nicolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1161699910  |0 (DE-627)1025173481  |0 (DE-576)50682750X  |4 aut 
245 1 0 |a Adaptive nonparametric estimation in the presence of dependence  |c Nicolas Asin, Jan Johannes 
264 1 |c 2017 
300 |a 37 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 05 Sep 2017 
500 |a Gesehen am 25.06.2018 
520 |a We consider nonparametric estimation problems in the presence of dependent data, notably nonparametric regression with random design and nonparametric density estimation. The proposed estimation procedure is based on a dimension reduction. The minimax optimal rate of convergence of the estimator is derived assuming a sufficiently weak dependence characterised by fast decreasing mixing coefficients. We illustrate these results by considering classical smoothness assumptions. However, the proposed estimator requires an optimal choice of a dimension parameter depending on certain characteristics of the function of interest, which are not known in practice. The main issue addressed in our work is an adaptive choice of this dimension parameter combining model selection and Lepski's method. It is inspired by the recent work of Goldenshluger and Lepski [(2011), ‘Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality’, The Annals of Statistics, 39, 1608-1632]. We show that this data-driven estimator can attain the lower risk bound up to a constant provided a fast decay of the mixing coefficients. 
650 4 |a 62G05 
650 4 |a 62G07 
650 4 |a 62G08 
650 4 |a adaptation 
650 4 |a Density estimation 
650 4 |a dependence 
650 4 |a minimax theory 
650 4 |a mixing 
650 4 |a nonparametric regression 
700 1 |a Johannes, Jan  |d 1973-  |e VerfasserIn  |0 (DE-588)124429386  |0 (DE-627)363341331  |0 (DE-576)187013535  |4 aut 
773 0 8 |i Enthalten in  |t Journal of nonparametric statistics  |d Abingdon : Taylor & Francis, 1991  |g 29(2017), 4, Seite 694-730  |h Online-Ressource  |w (DE-627)317860534  |w (DE-600)2014424-6  |w (DE-576)094449414  |x 1029-0311  |7 nnas  |a Adaptive nonparametric estimation in the presence of dependence 
773 1 8 |g volume:29  |g year:2017  |g number:4  |g pages:694-730  |g extent:37  |a Adaptive nonparametric estimation in the presence of dependence 
856 4 0 |u http://dx.doi.org/10.1080/10485252.2017.1367788  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20180625 
993 |a Article 
994 |a 2017 
998 |g 124429386  |a Johannes, Jan  |m 124429386:Johannes, Jan  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PJ124429386  |e 110200PJ124429386  |e 110000PJ124429386  |e 110400PJ124429386  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN1576827631  |e 3013713658 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"id":{"eki":["1576827631"],"doi":["10.1080/10485252.2017.1367788"]},"name":{"displayForm":["Nicolas Asin, Jan Johannes"]},"physDesc":[{"extent":"37 S."}],"relHost":[{"title":[{"title_sort":"Journal of nonparametric statistics","title":"Journal of nonparametric statistics"}],"language":["eng"],"recId":"317860534","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Adaptive nonparametric estimation in the presence of dependenceJournal of nonparametric statistics","note":["Gesehen am 01.07.11"],"titleAlt":[{"title":"Nonparametric statistics"}],"part":{"year":"2017","issue":"4","pages":"694-730","text":"29(2017), 4, Seite 694-730","volume":"29","extent":"37"},"pubHistory":["1.1991/92 -"],"id":{"eki":["317860534"],"zdb":["2014424-6"],"issn":["1029-0311"]},"origin":[{"dateIssuedDisp":"1991-","publisher":"Taylor & Francis ; Gordon & Breach","dateIssuedKey":"1991","publisherPlace":"Abingdon ; Newark, Va. [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title_sort":"Adaptive nonparametric estimation in the presence of dependence","title":"Adaptive nonparametric estimation in the presence of dependence"}],"person":[{"role":"aut","display":"Asin, Nicolas","roleDisplay":"VerfasserIn","given":"Nicolas","family":"Asin"},{"roleDisplay":"VerfasserIn","display":"Johannes, Jan","role":"aut","family":"Johannes","given":"Jan"}],"note":["Published online: 05 Sep 2017","Gesehen am 25.06.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1576827631"} 
SRT |a ASINNICOLAADAPTIVENO2017