Solution of the Hudson-Parthasarathy equation by ordered products
The solution of the quantum stochastic differential equation of Hudson and Partasarathy with constant coefficients can easily be formulated with the help of the normal ordered product. Introducing time ordering we obtain a new representation of the solution. This new representation gives an easy acc...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2017
|
| In: |
Stochastics
Year: 2017, Volume: 89, Issue: 6-7, Pages: 818-842 |
| ISSN: | 1744-2516 |
| DOI: | 10.1080/17442508.2016.1204300 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1080/17442508.2016.1204300 |
| Author Notes: | Wilhelm von Waldenfels |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1576828514 | ||
| 003 | DE-627 | ||
| 005 | 20221027145041.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180625s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1080/17442508.2016.1204300 |2 doi | |
| 035 | |a (DE-627)1576828514 | ||
| 035 | |a (DE-576)506828514 | ||
| 035 | |a (DE-599)BSZ506828514 | ||
| 035 | |a (OCoLC)1341012526 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Waldenfels, Wilhelm von |d 1932-2021 |e VerfasserIn |0 (DE-588)105911992 |0 (DE-627)077106598 |0 (DE-576)289546184 |4 aut | |
| 245 | 1 | 0 | |a Solution of the Hudson-Parthasarathy equation by ordered products |c Wilhelm von Waldenfels |
| 264 | 1 | |c 2017 | |
| 300 | |a 25 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 12 Jul 2016 | ||
| 500 | |a Gesehen am 25.06.2018 | ||
| 520 | |a The solution of the quantum stochastic differential equation of Hudson and Partasarathy with constant coefficients can easily be formulated with the help of the normal ordered product. Introducing time ordering we obtain a new representation of the solution. This new representation gives an easy access to the Evans-Hudson flow and the unitary condition of Hudson and Parthasarathy. We use the measure theoretical white noise calculus. | ||
| 650 | 4 | |a 46L53 Noncommutative probability | |
| 650 | 4 | |a 83C47 Methods of quantum field theory | |
| 650 | 4 | |a Normal and time ordering | |
| 650 | 4 | |a Quantum stochastic processes | |
| 773 | 0 | 8 | |i Enthalten in |t Stochastics |d London [u.a.] : Taylor & Francis, 2005 |g 89(2017), 6-7, Seite 818-842 |h Online-Ressource |w (DE-627)26688623X |w (DE-600)1468493-7 |w (DE-576)273877496 |x 1744-2516 |7 nnas |a Solution of the Hudson-Parthasarathy equation by ordered products |
| 773 | 1 | 8 | |g volume:89 |g year:2017 |g number:6-7 |g pages:818-842 |g extent:25 |a Solution of the Hudson-Parthasarathy equation by ordered products |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1080/17442508.2016.1204300 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180625 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 105911992 |a Waldenfels, Wilhelm von |m 105911992:Waldenfels, Wilhelm von |d 110000 |e 110000PW105911992 |k 0/110000/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1576828514 |e 3013715030 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Published online: 12 Jul 2016","Gesehen am 25.06.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1576828514","language":["eng"],"title":[{"title_sort":"Solution of the Hudson-Parthasarathy equation by ordered products","title":"Solution of the Hudson-Parthasarathy equation by ordered products"}],"person":[{"family":"Waldenfels","given":"Wilhelm von","display":"Waldenfels, Wilhelm von","roleDisplay":"VerfasserIn","role":"aut"}],"physDesc":[{"extent":"25 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2005","publisher":"Taylor & Francis","dateIssuedDisp":"2005-","publisherPlace":"London [u.a.]"}],"id":{"eki":["26688623X"],"zdb":["1468493-7"],"issn":["1744-2516"]},"note":["Gesehen am 06.02.24"],"disp":"Solution of the Hudson-Parthasarathy equation by ordered productsStochastics","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"26688623X","pubHistory":["77.2005 -"],"part":{"pages":"818-842","issue":"6-7","year":"2017","extent":"25","text":"89(2017), 6-7, Seite 818-842","volume":"89"},"title":[{"title_sort":"Stochastics","subtitle":"an international journal of probability and stochastic processes","title":"Stochastics"}]}],"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"id":{"doi":["10.1080/17442508.2016.1204300"],"eki":["1576828514"]},"name":{"displayForm":["Wilhelm von Waldenfels"]}} | ||
| SRT | |a WALDENFELSSOLUTIONOF2017 | ||