Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.

Purpose To assess radiomics as a tool to determine how well lesions found suspicious on breast cancer screening X-ray mammography can be categorized into malignant and benign with unenhanced magnetic resonance (MR) mammography with diffusion-weighted imaging and T2-weighted sequences. Materials and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bickelhaupt, Sebastian (VerfasserIn) , Vollmuth, Philipp (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Journal of magnetic resonance imaging
Year: 2017, Jahrgang: 46, Heft: 2, Pages: 604-616
ISSN:1522-2586
DOI:10.1002/jmri.25606
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1002/jmri.25606
Verlag, Volltext: https://onlinelibrary-wiley-com.ezproxy.medma.uni-heidelberg.de/doi/abs/10.1002/jmri.25606
Volltext
Verfasserangaben:Sebastian Bickelhaupt, MD, Daniel Paech, MD, Philipp Kickingereder, MD, Franziska Steudle, Wolfgang Lederer, MD, Heidi Daniel, MD, Michael Götz, PhD, Nils Gählert, Diana Tichy, PhD, Manuel Wiesenfarth, PhD, Frederik B. Laun, PhD, Klaus H. Maier‐Hein, PhD, Heinz-Peter Schlemmer, MD, PhD, and David Bonekamp, MD

MARC

LEADER 00000caa a2200000 c 4500
001 1577032306
003 DE-627
005 20220814181534.0
007 cr uuu---uuuuu
008 180629s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jmri.25606  |2 doi 
035 |a (DE-627)1577032306 
035 |a (DE-576)507032306 
035 |a (DE-599)BSZ507032306 
035 |a (OCoLC)1341013155 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Bickelhaupt, Sebastian  |d 1984-  |e VerfasserIn  |0 (DE-588)1074040759  |0 (DE-627)83020668X  |0 (DE-576)435548131  |4 aut 
245 1 0 |a Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.  |c Sebastian Bickelhaupt, MD, Daniel Paech, MD, Philipp Kickingereder, MD, Franziska Steudle, Wolfgang Lederer, MD, Heidi Daniel, MD, Michael Götz, PhD, Nils Gählert, Diana Tichy, PhD, Manuel Wiesenfarth, PhD, Frederik B. Laun, PhD, Klaus H. Maier‐Hein, PhD, Heinz-Peter Schlemmer, MD, PhD, and David Bonekamp, MD 
264 1 |c 2017 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First published: 02 February 2017 
500 |a Gesehen am 29.06.2018 
520 |a Purpose To assess radiomics as a tool to determine how well lesions found suspicious on breast cancer screening X-ray mammography can be categorized into malignant and benign with unenhanced magnetic resonance (MR) mammography with diffusion-weighted imaging and T2-weighted sequences. Materials and Methods From an asymptomatic screening cohort, 50 women with mammographically suspicious findings were examined with contrast-enhanced breast MRI (ceMRI) at 1.5T. Out of this protocol an unenhanced, abbreviated diffusion-weighted imaging protocol (ueMRI) including T2-weighted, (T2w), diffusion-weighted imaging (DWI), and DWI with background suppression (DWIBS) sequences and corresponding apparent diffusion coefficient (ADC) maps were extracted. From ueMRI-derived radiomic features, three Lasso-supervised machine-learning classifiers were constructed and compared with the clinical performance of a highly experienced radiologist: 1) univariate mean ADC model, 2) unconstrained radiomic model, 3) constrained radiomic model with mandatory inclusion of mean ADC. Results The unconstrained and constrained radiomic classifiers consisted of 11 parameters each and achieved differentiation of malignant from benign lesions with a .632 + bootstrap receiver operating characteristics (ROC) area under the curve (AUC) of 84.2%/85.1%, compared to 77.4% for mean ADC and 95.9%/95.9% for the experienced radiologist using ceMRI/ueMRI. Conclusion In this pilot study we identified two ueMRI radiomics classifiers that performed well in the differentiation of malignant from benign lesions and achieved higher performance than the mean ADC parameter alone. Classification was lower than the almost perfect performance of a highly experienced breast radiologist. The potential of radiomics to provide a training-independent diagnostic decision tool is indicated. A performance reaching the human expert would be highly desirable and based on our results is considered possible when the concept is extended in larger cohorts with further development and validation of the technique. Level of Evidence: 1 Technical Efficacy: Stage 2 
650 4 |a apparent diffusion coefficient 
650 4 |a diffusion-weighted imaging with background suppression 
650 4 |a DWIBS 
650 4 |a magnetic resonance 
650 4 |a mammography 
650 4 |a radiomics 
700 1 |a Vollmuth, Philipp  |d 1987-  |e VerfasserIn  |0 (DE-588)1043270086  |0 (DE-627)771319177  |0 (DE-576)394600738  |4 aut 
773 0 8 |i Enthalten in  |t Journal of magnetic resonance imaging  |d New York, NY : Wiley-Liss, 1991  |g 46(2017), 2, Seite 604-616  |h Online-Ressource  |w (DE-627)306360039  |w (DE-600)1497154-9  |w (DE-576)114617252  |x 1522-2586  |7 nnas  |a Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. 
773 1 8 |g volume:46  |g year:2017  |g number:2  |g pages:604-616  |g extent:13  |a Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. 
856 4 0 |u http://dx.doi.org/10.1002/jmri.25606  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://onlinelibrary-wiley-com.ezproxy.medma.uni-heidelberg.de/doi/abs/10.1002/jmri.25606  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180629 
993 |a Article 
994 |a 2017 
998 |g 1043270086  |a Vollmuth, Philipp  |m 1043270086:Vollmuth, Philipp  |d 910000  |d 911100  |e 910000PV1043270086  |e 911100PV1043270086  |k 0/910000/  |k 1/910000/911100/  |p 3 
998 |g 1074040759  |a Bickelhaupt, Sebastian  |m 1074040759:Bickelhaupt, Sebastian  |d 50000  |e 50000PB1074040759  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1577032306  |e 3014755540 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Bickelhaupt, Sebastian","roleDisplay":"VerfasserIn","role":"aut","family":"Bickelhaupt","given":"Sebastian"},{"given":"Philipp","family":"Vollmuth","role":"aut","display":"Vollmuth, Philipp","roleDisplay":"VerfasserIn"}],"title":[{"title":"Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.","title_sort":"Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography."}],"language":["eng"],"recId":"1577032306","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["First published: 02 February 2017","Gesehen am 29.06.2018"],"name":{"displayForm":["Sebastian Bickelhaupt, MD, Daniel Paech, MD, Philipp Kickingereder, MD, Franziska Steudle, Wolfgang Lederer, MD, Heidi Daniel, MD, Michael Götz, PhD, Nils Gählert, Diana Tichy, PhD, Manuel Wiesenfarth, PhD, Frederik B. Laun, PhD, Klaus H. Maier‐Hein, PhD, Heinz-Peter Schlemmer, MD, PhD, and David Bonekamp, MD"]},"id":{"doi":["10.1002/jmri.25606"],"eki":["1577032306"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"relHost":[{"title":[{"title":"Journal of magnetic resonance imaging","subtitle":"JMRI ; an official journal of the International Society for Magnetic Resonance in Medicine","title_sort":"Journal of magnetic resonance imaging"}],"pubHistory":["1.1991 -"],"part":{"extent":"13","text":"46(2017), 2, Seite 604-616","volume":"46","issue":"2","pages":"604-616","year":"2017"},"titleAlt":[{"title":"JMRI"}],"disp":"Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.Journal of magnetic resonance imaging","note":["Gesehen am 28.02.08","Fortsetzung der CD-ROM-Ausgabe"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"306360039","origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Wiley-Liss","publisherPlace":"New York, NY"}],"id":{"issn":["1522-2586"],"zdb":["1497154-9"],"eki":["306360039"],"doi":["10.1002/(ISSN)1522-2586"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"13 S."}]} 
SRT |a BICKELHAUPPREDICTION2017