SILCC-Zoom: the dynamical and chemical evolution of molecular clouds

We present 3D "zoom-in" simulations of the formation of two molecular clouds out of the galactic interstellar medium. We model the clouds - identified from the SILCC simulations - with a resolution of up to 0.06 pc using adaptive mesh refinement in combination with a chemical network to fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seifried, Daniel (VerfasserIn) , Girichidis, Philipp (VerfasserIn) , Klessen, Ralf S. (VerfasserIn) , Glover, Simon (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Monthly notices of the Royal Astronomical Society
Year: 2017, Jahrgang: 472, Heft: 4, Pages: 4797-4818
ISSN:1365-2966
DOI:10.1093/mnras/stx2343
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1093/mnras/stx2343
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1704.06487
Volltext
Verfasserangaben:D. Seifried, S. Walch, P. Girichidis, T. Naab, R. Wünsch, R.S. Klessen, S.C.O. Glover, T. Peters and P. Clark
Beschreibung
Zusammenfassung:We present 3D "zoom-in" simulations of the formation of two molecular clouds out of the galactic interstellar medium. We model the clouds - identified from the SILCC simulations - with a resolution of up to 0.06 pc using adaptive mesh refinement in combination with a chemical network to follow heating, cooling, and the formation of H$_2$ and CO including (self-) shielding. The two clouds are assembled within a few million years with mass growth rates of up to $\sim$ 10$^{-2}$ M$_\mathrm{sun}$ yr$^{-1}$ and final masses of $\sim$ 50 000 M$_\mathrm{sun}$. A spatial resolution of $\lesssim$ 0.1 pc is required for convergence with respect to the mass, velocity dispersion, and chemical abundances of the clouds, although these properties also depend on the cloud definition such as based on density thresholds, H$_2$ or CO mass fraction. To avoid grid artefacts, the progressive increase of resolution has to occur within the free-fall time of the densest structures (1 - 1.5 Myr) and $\gtrsim$ 200 time steps should be spent on each refinement level before the resolution is progressively increased further. This avoids the formation of spurious, large-scale, rotating clumps from unresolved turbulent flows. While CO is a good tracer for the evolution of dense gas with number densities
Beschreibung:Advance Access publication 2017 September 11
Gesehen am 29.06.2018
Beschreibung:Online Resource
ISSN:1365-2966
DOI:10.1093/mnras/stx2343