Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes

Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Winter, Christof Alexander (VerfasserIn) , Niedergethmann, Marco (VerfasserIn) , Büchler, Markus W. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 17, 2012
In: PLoS Computational Biology
Year: 2012, Jahrgang: 8, Heft: 5, Pages: e1002511
ISSN:1553-7358
DOI:10.1371/journal.pcbi.1002511
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1371/journal.pcbi.1002511
Verlag, kostenfrei, Volltext: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002511
Volltext
Verfasserangaben:Christof Winter, Glen Kristiansen, Stephan Kersting, Janine Roy, Daniela Aust, Thomas Knösel, Petra Rümmele, Beatrix Jahnke, Vera Hentrich, Felix Rückert, Marco Niedergethmann, Wilko Weichert, Marcus Bahra, Hans J. Schlitt, Utz Settmacher, Helmut Friess, Markus Büchler, Hans-Detlev Saeger, Michael Schroeder, Christian Pilarsky, Robert Grützmann

MARC

LEADER 00000caa a2200000 c 4500
001 1577627725
003 DE-627
005 20220814192647.0
007 cr uuu---uuuuu
008 180716s2012 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pcbi.1002511  |2 doi 
035 |a (DE-627)1577627725 
035 |a (DE-576)507627725 
035 |a (DE-599)BSZ507627725 
035 |a (OCoLC)1341013855 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Winter, Christof Alexander  |d 1976-  |e VerfasserIn  |0 (DE-588)132899132  |0 (DE-627)528406590  |0 (DE-576)299489256  |4 aut 
245 1 0 |a Google goes cancer  |b improving outcome prediction for cancer patients by network-based ranking of marker genes  |c Christof Winter, Glen Kristiansen, Stephan Kersting, Janine Roy, Daniela Aust, Thomas Knösel, Petra Rümmele, Beatrix Jahnke, Vera Hentrich, Felix Rückert, Marco Niedergethmann, Wilko Weichert, Marcus Bahra, Hans J. Schlitt, Utz Settmacher, Helmut Friess, Markus Büchler, Hans-Detlev Saeger, Michael Schroeder, Christian Pilarsky, Robert Grützmann 
264 1 |c May 17, 2012 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.07.2018 
520 |a Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice. 
650 4 |a Algorithms 
650 4 |a Gene expression 
650 4 |a Genetic networks 
650 4 |a Immunologic adjuvants 
650 4 |a Microarrays 
650 4 |a Pancreatic cancer 
650 4 |a Prognosis 
650 4 |a Protein interaction networks 
700 1 |a Niedergethmann, Marco  |d 1971-  |e VerfasserIn  |0 (DE-588)120827700  |0 (DE-627)705018334  |0 (DE-576)292404832  |4 aut 
700 1 |a Büchler, Markus W.  |d 1955-  |e VerfasserIn  |0 (DE-588)120893339  |0 (DE-627)080952526  |0 (DE-576)292434146  |4 aut 
773 0 8 |i Enthalten in  |a Public Library of Science  |t PLoS Computational Biology  |d San Francisco, Calif. : Public Library of Science, 2005  |g 8(2012,5) Artikel-Numer 102511, 16 Seiten  |h Online-Ressource  |w (DE-627)491436017  |w (DE-600)2193340-6  |w (DE-576)273890492  |x 1553-7358  |7 nnas 
773 1 8 |g volume:8  |g year:2012  |g number:5  |g pages:e1002511  |g extent:16  |a Google goes cancer improving outcome prediction for cancer patients by network-based ranking of marker genes 
856 4 0 |u http://dx.doi.org/10.1371/journal.pcbi.1002511  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002511  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180716 
993 |a Article 
994 |a 2012 
998 |g 120893339  |a Büchler, Markus W.  |m 120893339:Büchler, Markus W.  |d 910000  |d 910200  |e 910000PB120893339  |e 910200PB120893339  |k 0/910000/  |k 1/910000/910200/  |p 18 
998 |g 120827700  |a Niedergethmann, Marco  |m 120827700:Niedergethmann, Marco  |d 60000  |d 61800  |e 60000PN120827700  |e 61800PN120827700  |k 0/60000/  |k 1/60000/61800/  |p 11 
999 |a KXP-PPN1577627725  |e 3017603520 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Google goes cancer","subtitle":"improving outcome prediction for cancer patients by network-based ranking of marker genes","title":"Google goes cancer"}],"physDesc":[{"extent":"16 S."}],"language":["eng"],"name":{"displayForm":["Christof Winter, Glen Kristiansen, Stephan Kersting, Janine Roy, Daniela Aust, Thomas Knösel, Petra Rümmele, Beatrix Jahnke, Vera Hentrich, Felix Rückert, Marco Niedergethmann, Wilko Weichert, Marcus Bahra, Hans J. Schlitt, Utz Settmacher, Helmut Friess, Markus Büchler, Hans-Detlev Saeger, Michael Schroeder, Christian Pilarsky, Robert Grützmann"]},"note":["Gesehen am 16.07.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"given":"Christof Alexander","family":"Winter","display":"Winter, Christof Alexander","role":"aut"},{"given":"Marco","role":"aut","display":"Niedergethmann, Marco","family":"Niedergethmann"},{"given":"Markus W.","display":"Büchler, Markus W.","family":"Büchler","role":"aut"}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"491436017","part":{"pages":"e1002511","volume":"8","text":"8(2012,5) Artikel-Numer 102511, 16 Seiten","extent":"16","year":"2012","issue":"5"},"disp":"Public Library of SciencePLoS Computational Biology","pubHistory":["1.2005 -"],"corporate":[{"role":"aut","display":"Public Library of Science"}],"origin":[{"dateIssuedKey":"2005","publisherPlace":"San Francisco, Calif.","dateIssuedDisp":"2005-","publisher":"Public Library of Science"}],"id":{"issn":["1553-7358"],"zdb":["2193340-6"],"eki":["491436017"]},"note":["Gesehen am 23. November 2020"],"name":{"displayForm":["publ. by the Public Library of Science (PLoS) in association with the International Society for Computational Biology (ISCB)"]},"title":[{"subtitle":"a new community journal","title":"PLoS Computational Biology","title_sort":"PLoS Computational Biology"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"]}],"id":{"doi":["10.1371/journal.pcbi.1002511"],"eki":["1577627725"]},"recId":"1577627725","origin":[{"dateIssuedDisp":"May 17, 2012","dateIssuedKey":"2012"}]} 
SRT |a WINTERCHRIGOOGLEGOES1720