Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya

Malaria surveillance data provide opportunity to develop forecasting models. Seasonal variability in environmental factors correlate with malaria transmission, thus the identification of transmission patterns is useful in developing prediction models. However, with changing seasonal transmission pat...

Full description

Saved in:
Bibliographic Details
Main Authors: Sewe, Maquins Odhiambo (Author) , Tozan, Yeşim (Author) , Rocklöv, Joacim (Author)
Format: Article (Journal)
Language:English
Published: 01 June 2017
In: Scientific reports
Year: 2017, Volume: 7
ISSN:2045-2322
DOI:10.1038/s41598-017-02560-z
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1038/s41598-017-02560-z
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-017-02560-z
Get full text
Author Notes:Maquins Odhiambo Sewe, Yesim Tozan, Clas Ahlm and Joacim Rocklöv

MARC

LEADER 00000caa a2200000 c 4500
001 1577704029
003 DE-627
005 20240316100456.0
007 cr uuu---uuuuu
008 180718s2017 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-017-02560-z  |2 doi 
035 |a (DE-627)1577704029 
035 |a (DE-576)507704029 
035 |a (DE-599)BSZ507704029 
035 |a (OCoLC)1341013883 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Sewe, Maquins Odhiambo  |e VerfasserIn  |0 (DE-588)1162960485  |0 (DE-627)1027049729  |0 (DE-576)507702468  |4 aut 
245 1 0 |a Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya  |c Maquins Odhiambo Sewe, Yesim Tozan, Clas Ahlm and Joacim Rocklöv 
264 1 |c 01 June 2017 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online 01 June 2017 
500 |a Gesehen am 18.07.2018 
520 |a Malaria surveillance data provide opportunity to develop forecasting models. Seasonal variability in environmental factors correlate with malaria transmission, thus the identification of transmission patterns is useful in developing prediction models. However, with changing seasonal transmission patterns, either due to interventions or shifting weather seasons, traditional modelling approaches may not yield adequate predictive skill. Two statistical models,a general additive model (GAM) and GAMBOOST model with boosted regression were contrasted by assessing their predictive accuracy in forecasting malaria admissions at lead times of one to three months. Monthly admission data for children under five years with confirmed malaria at the Siaya district hospital in Western Kenya for the period 2003 to 2013 were used together with satellite derived data on rainfall, average temperature and evapotranspiration(ET). There was a total of 8,476 confirmed malaria admissions. The peak of malaria season changed and malaria admissions reduced overtime. The GAMBOOST model at 1-month lead time had the highest predictive skill during both the training and test periods and thus can be utilized in a malaria early warning system. 
700 1 |a Tozan, Yeşim  |e VerfasserIn  |0 (DE-588)1063150310  |0 (DE-627)81067520X  |0 (DE-576)420528350  |4 aut 
700 1 |a Rocklöv, Joacim  |e VerfasserIn  |0 (DE-588)1162960965  |0 (DE-627)1027050808  |0 (DE-576)507703707  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 7(2017) Artikel-Nummer 2589, 10 Seiten  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya 
773 1 8 |g volume:7  |g year:2017  |g extent:10  |a Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya 
856 4 0 |u http://dx.doi.org/10.1038/s41598-017-02560-z  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-017-02560-z  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180718 
993 |a Article 
994 |a 2017 
998 |g 1162960965  |a Rocklöv, Joacim  |m 1162960965:Rocklöv, Joacim  |p 4  |y j 
998 |g 1063150310  |a Tozan, Yeşim  |m 1063150310:Tozan, Yeşim  |p 2 
999 |a KXP-PPN1577704029  |e 3018231813 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"01 June 2017","dateIssuedKey":"2017"}],"id":{"eki":["1577704029"],"doi":["10.1038/s41598-017-02560-z"]},"person":[{"family":"Sewe","role":"aut","display":"Sewe, Maquins Odhiambo","given":"Maquins Odhiambo"},{"family":"Tozan","role":"aut","display":"Tozan, Yeşim","given":"Yeşim"},{"family":"Rocklöv","role":"aut","display":"Rocklöv, Joacim","given":"Joacim"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya","title":"Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya"}],"name":{"displayForm":["Maquins Odhiambo Sewe, Yesim Tozan, Clas Ahlm and Joacim Rocklöv"]},"physDesc":[{"extent":"10 S."}],"recId":"1577704029","relHost":[{"note":["Gesehen am 12.07.24"],"recId":"663366712","physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1, article number 1 (2011)-"],"language":["eng"],"disp":"Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western KenyaScientific reports","title":[{"title":"Scientific reports","title_sort":"Scientific reports"}],"id":{"zdb":["2615211-3"],"eki":["663366712"],"issn":["2045-2322"]},"part":{"text":"7(2017) Artikel-Nummer 2589, 10 Seiten","year":"2017","volume":"7","extent":"10"},"origin":[{"dateIssuedKey":"2011","publisherPlace":"[London] ; London","publisher":"Springer Nature ; Nature Publishing Group","dateIssuedDisp":"2011-"}]}],"note":["Published online 01 June 2017","Gesehen am 18.07.2018"],"language":["eng"]} 
SRT |a SEWEMAQUINUSINGREMOT0120