Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network: a feasibility study

Purpose The oxygen extraction fraction (OEF) is an important biomarker for tissue-viability. MRI enables noninvasive estimation of the OEF based on the blood-oxygenation-level-dependent (BOLD) effect. Quantitative OEF-mapping is commonly applied using least-squares regression (LSR) to an analytical...

Full description

Saved in:
Bibliographic Details
Main Authors: Domsch, Sebastian (Author) , Mürle, Bettina (Author) , Weingärtner, Sebastian (Author) , Zapp, Jascha (Author) , Wenz, Frederik (Author) , Schad, Lothar R. (Author)
Format: Article (Journal)
Language:English
Published: 2018
In: Magnetic resonance in medicine
Year: 2017, Volume: 79, Issue: 2, Pages: 890-899
ISSN:1522-2594
DOI:10.1002/mrm.26749
Online Access:Verlag, Volltext: http://dx.doi.org/10.1002/mrm.26749
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.26749
Get full text
Author Notes:Sebastian Domsch, Bettina Mürle, Sebastian Weingärtner, Jascha Zapp, Frederik Wenz, and Lothar R. Schad

MARC

LEADER 00000caa a2200000 c 4500
001 1577729188
003 DE-627
005 20230426230705.0
007 cr uuu---uuuuu
008 180718r20182017xx |||||o 00| ||eng c
024 7 |a 10.1002/mrm.26749  |2 doi 
035 |a (DE-627)1577729188 
035 |a (DE-576)507729188 
035 |a (DE-599)BSZ507729188 
035 |a (OCoLC)1341013886 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Domsch, Sebastian  |d 1981-  |e VerfasserIn  |0 (DE-588)103361016X  |0 (DE-627)742070964  |0 (DE-576)381227855  |4 aut 
245 1 0 |a Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network  |b a feasibility study  |c Sebastian Domsch, Bettina Mürle, Sebastian Weingärtner, Jascha Zapp, Frederik Wenz, and Lothar R. Schad 
264 1 |c 2018 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First published: 14 May 2017 
500 |a Gesehen am 18.07.2018 
520 |a Purpose The oxygen extraction fraction (OEF) is an important biomarker for tissue-viability. MRI enables noninvasive estimation of the OEF based on the blood-oxygenation-level-dependent (BOLD) effect. Quantitative OEF-mapping is commonly applied using least-squares regression (LSR) to an analytical tissue model. However, the LSR method has not yet become clinically established due to the necessity for long acquisition times. Artificial neural networks (ANNs) recently have received increasing interest for robust curve-fitting and might pose an alternative to the conventional LSR method for reduced acquisition times. This study presents in vivo OEF mapping results using the conventional LSR and the proposed ANN method. Methods In vivo data of five healthy volunteers and one patient with a primary brain tumor were acquired at 3T using a gradient-echo sampled spin-echo (GESSE) sequence. The ANN was trained with simulated BOLD data. Results In healthy subjects, the mean OEF was 36 ± 2% (LSR) and 40 ± 1% (ANN). The OEF variance within subjects was reduced from 8% to 6% using the ANN method. In the patient, both methods revealed a distinct OEF hotspot in the tumor area, whereas ANN showed less apparent artifacts in surrounding tissue. Conclusion In clinical scan times, the ANN analysis enables OEF mapping with reduced variance, which could facilitate its integration into clinical protocols. Magn Reson Med 79:890-899, 2018. © 2017 International Society for Magnetic Resonance in Medicine. 
534 |c 2017 
650 4 |a analytical tissue model 
650 4 |a artificial neural network 
650 4 |a blood-oxygenation-level-dependent (BOLD) 
650 4 |a GESSEk 
650 4 |a least-squares regression 
650 4 |a machine learning 
650 4 |a oxygen extraction fraction 
700 1 |a Mürle, Bettina  |d 1978-  |e VerfasserIn  |0 (DE-588)133807304  |0 (DE-627)556782100  |0 (DE-576)276978102  |4 aut 
700 1 |a Weingärtner, Sebastian  |d 1991-  |e VerfasserIn  |0 (DE-588)1051891507  |0 (DE-627)786975199  |0 (DE-576)407522883  |4 aut 
700 1 |a Zapp, Jascha  |e VerfasserIn  |0 (DE-588)1060564955  |0 (DE-627)800322738  |0 (DE-576)290208920  |4 aut 
700 1 |a Wenz, Frederik  |d 1966-  |e VerfasserIn  |0 (DE-588)113310390  |0 (DE-627)663837766  |0 (DE-576)346656281  |4 aut 
700 1 |a Schad, Lothar R.  |d 1956-  |e VerfasserIn  |0 (DE-588)1028817630  |0 (DE-627)731640241  |0 (DE-576)376271221  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in medicine  |d New York, NY [u.a.] : Wiley-Liss, 1984  |g 79(2018), 2, Seite 890-899  |h Online-Ressource  |w (DE-627)303257040  |w (DE-600)1493786-4  |w (DE-576)096290455  |x 1522-2594  |7 nnas  |a Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network a feasibility study 
773 1 8 |g volume:79  |g year:2018  |g number:2  |g pages:890-899  |g extent:10  |a Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network a feasibility study 
856 4 0 |u http://dx.doi.org/10.1002/mrm.26749  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.26749  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180718 
993 |a Article 
994 |a 2018 
998 |g 1028817630  |a Schad, Lothar R.  |m 1028817630:Schad, Lothar R. 
998 |g 113310390  |a Wenz, Frederik  |m 113310390:Wenz, Frederik  |d 60000  |d 63000  |e 60000PW113310390  |e 63000PW113310390  |k 0/60000/  |k 1/60000/63000/ 
998 |g 1060564955  |a Zapp, Jascha  |m 1060564955:Zapp, Jascha 
998 |g 1051891507  |a Weingärtner, Sebastian  |m 1051891507:Weingärtner, Sebastian 
998 |g 133807304  |a Mürle, Bettina  |m 133807304:Mürle, Bettina  |d 60000  |d 63000  |e 60000PM133807304  |e 63000PM133807304  |k 0/60000/  |k 1/60000/63000/ 
998 |g 103361016X  |a Domsch, Sebastian  |m 103361016X:Domsch, Sebastian  |p 1  |x j 
999 |a KXP-PPN1577729188  |e 3018276256 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"note":["First published: 14 May 2017","Gesehen am 18.07.2018"],"title":[{"title":"Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network","subtitle":"a feasibility study","title_sort":"Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1577729188","relHost":[{"language":["eng"],"titleAlt":[{"title":"MRM"}],"part":{"volume":"79","extent":"10","text":"79(2018), 2, Seite 890-899","issue":"2","year":"2018","pages":"890-899"},"note":["Gesehen am 28.02.08"],"origin":[{"publisherPlace":"New York, NY [u.a.]","dateIssuedDisp":"1984-","publisher":"Wiley-Liss","dateIssuedKey":"1984"}],"pubHistory":["1.1984 -"],"title":[{"title":"Magnetic resonance in medicine","title_sort":"Magnetic resonance in medicine","subtitle":"MRM ; an official journal of the International Society for Magnetic Resonance in Medicine"}],"disp":"Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network a feasibility studyMagnetic resonance in medicine","type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"303257040","id":{"doi":["10.1002/(ISSN)1522-2594"],"zdb":["1493786-4"],"issn":["1522-2594"],"eki":["303257040"]}}],"name":{"displayForm":["Sebastian Domsch, Bettina Mürle, Sebastian Weingärtner, Jascha Zapp, Frederik Wenz, and Lothar R. Schad"]},"physDesc":[{"extent":"10 S."}],"id":{"doi":["10.1002/mrm.26749"],"eki":["1577729188"]},"person":[{"display":"Domsch, Sebastian","family":"Domsch","given":"Sebastian","role":"aut"},{"family":"Mürle","display":"Mürle, Bettina","role":"aut","given":"Bettina"},{"role":"aut","given":"Sebastian","family":"Weingärtner","display":"Weingärtner, Sebastian"},{"given":"Jascha","role":"aut","display":"Zapp, Jascha","family":"Zapp"},{"role":"aut","given":"Frederik","display":"Wenz, Frederik","family":"Wenz"},{"role":"aut","given":"Lothar R.","display":"Schad, Lothar R.","family":"Schad"}],"language":["eng"]} 
SRT |a DOMSCHSEBAOXYGENEXTR2018