Inference from high-frequency data: a subsampling approach

In this paper, we show how to estimate the asymptotic (conditional) covariance matrix, which appears in central limit theorems in high-frequency estimation of asset return volatility. We provide a recipe for the estimation of this matrix by subsampling; an approach that computes rescaled copies of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Christensen, Kim (VerfasserIn) , Thamrongrat, Nopporn (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Journal of econometrics
Year: 2016, Jahrgang: 197, Heft: 2, Pages: 245-272
DOI:10.1016/j.jeconom.2016.07.010
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.jeconom.2016.07.010
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0304407616302172
Volltext
Verfasserangaben:K. Christensen, M. Podolskij, N. Thamrongrat, B. Veliyev

MARC

LEADER 00000caa a2200000 c 4500
001 1577742842
003 DE-627
005 20240316100456.0
007 cr uuu---uuuuu
008 180719r20172016xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jeconom.2016.07.010  |2 doi 
035 |a (DE-627)1577742842 
035 |a (DE-576)507742842 
035 |a (DE-599)BSZ507742842 
035 |a (OCoLC)1341014027 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Christensen, Kim  |e VerfasserIn  |0 (DE-588)1163026093  |0 (DE-627)102727059X  |0 (DE-576)507746236  |4 aut 
245 1 0 |a Inference from high-frequency data  |b a subsampling approach  |c K. Christensen, M. Podolskij, N. Thamrongrat, B. Veliyev 
264 1 |c 2017 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 9 December 2016 
500 |a Gesehen am 19.07.2018 
520 |a In this paper, we show how to estimate the asymptotic (conditional) covariance matrix, which appears in central limit theorems in high-frequency estimation of asset return volatility. We provide a recipe for the estimation of this matrix by subsampling; an approach that computes rescaled copies of the original statistic based on local stretches of high-frequency data, and then it studies the sampling variation of these. We show that our estimator is consistent both in frictionless markets and models with additive microstructure noise. We derive a rate of convergence for it and are also able to determine an optimal rate for its tuning parameters (e.g., the number of subsamples). Subsampling does not require an extra set of estimators to do inference, which renders it trivial to implement. As a variance-covariance matrix estimator, it has the attractive feature that it is positive semi-definite by construction. Moreover, the subsampler is to some extent automatic, as it does not exploit explicit knowledge about the structure of the asymptotic covariance. It therefore tends to adapt to the problem at hand and be robust against misspecification of the noise process. As such, this paper facilitates assessment of the sampling errors inherent in high-frequency estimation of volatility. We highlight the finite sample properties of the subsampler in a Monte Carlo study, while some initial empirical work demonstrates its use to draw feasible inference about volatility in financial markets. 
534 |c 2016 
650 4 |a Bipower variation 
650 4 |a High-frequency data 
650 4 |a Microstructure noise 
650 4 |a Positive semi-definite estimation 
650 4 |a Pre-averaging 
650 4 |a Stochastic volatility 
650 4 |a Subsampling 
700 1 |a Thamrongrat, Nopporn  |e VerfasserIn  |0 (DE-588)1112949453  |0 (DE-627)866985506  |0 (DE-576)47678302X  |4 aut 
773 0 8 |i Enthalten in  |t Journal of econometrics  |d Amsterdam [u.a.] : Elsevier, 1973  |g 197(2017), 2, Seite 245-272  |h Online-Ressource  |w (DE-627)253781817  |w (DE-600)1460617-3  |w (DE-576)072794437  |7 nnas  |a Inference from high-frequency data a subsampling approach 
773 1 8 |g volume:197  |g year:2017  |g number:2  |g pages:245-272  |g extent:28  |a Inference from high-frequency data a subsampling approach 
856 4 0 |u http://dx.doi.org/10.1016/j.jeconom.2016.07.010  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0304407616302172  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180719 
993 |a Article 
994 |a 2017 
998 |g 1112949453  |a Thamrongrat, Nopporn  |m 1112949453:Thamrongrat, Nopporn  |d 110000  |e 110000PT1112949453  |k 0/110000/  |p 1  |x j 
999 |a KXP-PPN1577742842  |e 3018300092 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Christensen","given":"Kim","display":"Christensen, Kim","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Thamrongrat, Nopporn","roleDisplay":"VerfasserIn","given":"Nopporn","family":"Thamrongrat"}],"title":[{"subtitle":"a subsampling approach","title":"Inference from high-frequency data","title_sort":"Inference from high-frequency data"}],"language":["eng"],"recId":"1577742842","note":["Available online 9 December 2016","Gesehen am 19.07.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["K. Christensen, M. Podolskij, N. Thamrongrat, B. Veliyev"]},"id":{"doi":["10.1016/j.jeconom.2016.07.010"],"eki":["1577742842"]},"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"relHost":[{"pubHistory":["1.1973 - 177.2013; Vol. 178.2014 –"],"part":{"extent":"28","volume":"197","text":"197(2017), 2, Seite 245-272","issue":"2","pages":"245-272","year":"2017"},"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Inference from high-frequency data a subsampling approachJournal of econometrics","physDesc":[{"extent":"Online-Ressource"}],"recId":"253781817","language":["eng"],"title":[{"title_sort":"Journal of econometrics","title":"Journal of econometrics"}],"origin":[{"dateIssuedDisp":"1973-","publisher":"Elsevier ; North-Holland Publ. Co.","dateIssuedKey":"1973","publisherPlace":"Amsterdam [u.a.] ; Amsterdam"}],"id":{"zdb":["1460617-3"],"eki":["253781817"]}}],"physDesc":[{"extent":"28 S."}]} 
SRT |a CHRISTENSEINFERENCEF2017