Active learning for convenient annotation and classification of secondary ion mass spectrometry images

Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advanc...

Full description

Saved in:
Bibliographic Details
Main Authors: Hanselmann, Michael (Author) , Röder, Jens (Author) , Köthe, Ullrich (Author) , Hamprecht, Fred (Author)
Format: Article (Journal)
Language:English
Published: 2013
In: Analytical chemistry
Year: 2013, Volume: 85, Issue: 1, Pages: 147-155
ISSN:1520-6882
DOI:10.1021/ac3023313
Online Access:Verlag, Volltext: http://dx.doi.org/10.1021/ac3023313
Verlag, Volltext: http://pubs.acs.org/doi/10.1021/ac3023313
Get full text
Author Notes:Michael Hanselmann, Jens Röder, Ullrich Köthe, Bernhard Y. Renard, Ron M.A. Heeren, and Fred A. Hamprecht

MARC

LEADER 00000caa a2200000 c 4500
001 1577905865
003 DE-627
005 20230426230739.0
007 cr uuu---uuuuu
008 180724s2013 xx |||||o 00| ||eng c
024 7 |a 10.1021/ac3023313  |2 doi 
035 |a (DE-627)1577905865 
035 |a (DE-576)507905865 
035 |a (DE-599)BSZ507905865 
035 |a (OCoLC)1341014332 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 30  |2 sdnb 
100 1 |a Hanselmann, Michael  |e VerfasserIn  |0 (DE-588)1163305731  |0 (DE-627)1027554490  |0 (DE-576)507905792  |4 aut 
245 1 0 |a Active learning for convenient annotation and classification of secondary ion mass spectrometry images  |c Michael Hanselmann, Jens Röder, Ullrich Köthe, Bernhard Y. Renard, Ron M.A. Heeren, and Fred A. Hamprecht 
264 1 |c 2013 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Publication date: November 16, 2012 
500 |a Gesehen am 24.07.2018 
520 |a Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images. 
700 1 |a Röder, Jens  |e VerfasserIn  |0 (DE-588)103054641X  |0 (DE-627)735463859  |0 (DE-576)378395580  |4 aut 
700 1 |a Köthe, Ullrich  |e VerfasserIn  |0 (DE-588)123963435  |0 (DE-627)594480884  |0 (DE-576)304484520  |4 aut 
700 1 |a Hamprecht, Fred  |e VerfasserIn  |0 (DE-588)1020505605  |0 (DE-627)691240280  |0 (DE-576)360605516  |4 aut 
773 0 8 |i Enthalten in  |t Analytical chemistry  |d Columbus, Ohio : American Chemical Society, 1947  |g 85(2013), 1, Seite 147-155  |h Online-Ressource  |w (DE-627)300896530  |w (DE-600)1483443-1  |w (DE-576)088704564  |x 1520-6882  |7 nnas  |a Active learning for convenient annotation and classification of secondary ion mass spectrometry images 
773 1 8 |g volume:85  |g year:2013  |g number:1  |g pages:147-155  |g extent:9  |a Active learning for convenient annotation and classification of secondary ion mass spectrometry images 
856 4 0 |u http://dx.doi.org/10.1021/ac3023313  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://pubs.acs.org/doi/10.1021/ac3023313  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180724 
993 |a Article 
994 |a 2012 
998 |g 1020505605  |a Hamprecht, Fred  |m 1020505605:Hamprecht, Fred  |d 700000  |d 708070  |e 700000PH1020505605  |e 708070PH1020505605  |k 0/700000/  |k 1/700000/708070/  |p 6  |y j 
998 |g 123963435  |a Köthe, Ullrich  |m 123963435:Köthe, Ullrich  |d 700000  |d 708070  |e 700000PK123963435  |e 708070PK123963435  |k 0/700000/  |k 1/700000/708070/  |p 3 
998 |g 103054641X  |a Röder, Jens  |m 103054641X:Röder, Jens  |d 110000  |e 110000PR103054641X  |k 0/110000/  |p 2 
998 |g 1163305731  |a Hanselmann, Michael  |m 1163305731:Hanselmann, Michael  |d 700000  |d 708070  |e 700000PH1163305731  |e 708070PH1163305731  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1577905865  |e 3019458641 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1577905865","name":{"displayForm":["Michael Hanselmann, Jens Röder, Ullrich Köthe, Bernhard Y. Renard, Ron M.A. Heeren, and Fred A. Hamprecht"]},"physDesc":[{"extent":"9 S."}],"relHost":[{"recId":"300896530","pubHistory":["19.1947 -"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Chemical Society"]},"id":{"zdb":["1483443-1"],"eki":["300896530"],"issn":["1520-6882"]},"disp":"Active learning for convenient annotation and classification of secondary ion mass spectrometry imagesAnalytical chemistry","language":["eng"],"part":{"issue":"1","extent":"9","volume":"85","year":"2013","pages":"147-155","text":"85(2013), 1, Seite 147-155"},"origin":[{"dateIssuedDisp":"1947-","publisherPlace":"Columbus, Ohio","publisher":"American Chemical Society","dateIssuedKey":"1947"}],"note":["Gesehen am 27.08.2020","Ungezählte Beil.: News & features"],"title":[{"title":"Analytical chemistry","title_sort":"Analytical chemistry","subtitle":"the authoritative voice of the analytical community"}],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"id":{"eki":["1577905865"],"doi":["10.1021/ac3023313"]},"person":[{"given":"Michael","role":"aut","display":"Hanselmann, Michael","family":"Hanselmann"},{"display":"Röder, Jens","family":"Röder","given":"Jens","role":"aut"},{"role":"aut","given":"Ullrich","display":"Köthe, Ullrich","family":"Köthe"},{"family":"Hamprecht","display":"Hamprecht, Fred","given":"Fred","role":"aut"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Publication date: November 16, 2012","Gesehen am 24.07.2018"],"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"2013"}],"title":[{"title":"Active learning for convenient annotation and classification of secondary ion mass spectrometry images","title_sort":"Active learning for convenient annotation and classification of secondary ion mass spectrometry images"}]} 
SRT |a HANSELMANNACTIVELEAR2013