Active learning for convenient annotation and classification of secondary ion mass spectrometry images
Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advanc...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2013
|
| In: |
Analytical chemistry
Year: 2013, Volume: 85, Issue: 1, Pages: 147-155 |
| ISSN: | 1520-6882 |
| DOI: | 10.1021/ac3023313 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1021/ac3023313 Verlag, Volltext: http://pubs.acs.org/doi/10.1021/ac3023313 |
| Author Notes: | Michael Hanselmann, Jens Röder, Ullrich Köthe, Bernhard Y. Renard, Ron M.A. Heeren, and Fred A. Hamprecht |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1577905865 | ||
| 003 | DE-627 | ||
| 005 | 20230426230739.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180724s2013 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1021/ac3023313 |2 doi | |
| 035 | |a (DE-627)1577905865 | ||
| 035 | |a (DE-576)507905865 | ||
| 035 | |a (DE-599)BSZ507905865 | ||
| 035 | |a (OCoLC)1341014332 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 30 |2 sdnb | ||
| 100 | 1 | |a Hanselmann, Michael |e VerfasserIn |0 (DE-588)1163305731 |0 (DE-627)1027554490 |0 (DE-576)507905792 |4 aut | |
| 245 | 1 | 0 | |a Active learning for convenient annotation and classification of secondary ion mass spectrometry images |c Michael Hanselmann, Jens Röder, Ullrich Köthe, Bernhard Y. Renard, Ron M.A. Heeren, and Fred A. Hamprecht |
| 264 | 1 | |c 2013 | |
| 300 | |a 9 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Publication date: November 16, 2012 | ||
| 500 | |a Gesehen am 24.07.2018 | ||
| 520 | |a Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images. | ||
| 700 | 1 | |a Röder, Jens |e VerfasserIn |0 (DE-588)103054641X |0 (DE-627)735463859 |0 (DE-576)378395580 |4 aut | |
| 700 | 1 | |a Köthe, Ullrich |e VerfasserIn |0 (DE-588)123963435 |0 (DE-627)594480884 |0 (DE-576)304484520 |4 aut | |
| 700 | 1 | |a Hamprecht, Fred |e VerfasserIn |0 (DE-588)1020505605 |0 (DE-627)691240280 |0 (DE-576)360605516 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Analytical chemistry |d Columbus, Ohio : American Chemical Society, 1947 |g 85(2013), 1, Seite 147-155 |h Online-Ressource |w (DE-627)300896530 |w (DE-600)1483443-1 |w (DE-576)088704564 |x 1520-6882 |7 nnas |a Active learning for convenient annotation and classification of secondary ion mass spectrometry images |
| 773 | 1 | 8 | |g volume:85 |g year:2013 |g number:1 |g pages:147-155 |g extent:9 |a Active learning for convenient annotation and classification of secondary ion mass spectrometry images |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1021/ac3023313 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://pubs.acs.org/doi/10.1021/ac3023313 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180724 | ||
| 993 | |a Article | ||
| 994 | |a 2012 | ||
| 998 | |g 1020505605 |a Hamprecht, Fred |m 1020505605:Hamprecht, Fred |d 700000 |d 708070 |e 700000PH1020505605 |e 708070PH1020505605 |k 0/700000/ |k 1/700000/708070/ |p 6 |y j | ||
| 998 | |g 123963435 |a Köthe, Ullrich |m 123963435:Köthe, Ullrich |d 700000 |d 708070 |e 700000PK123963435 |e 708070PK123963435 |k 0/700000/ |k 1/700000/708070/ |p 3 | ||
| 998 | |g 103054641X |a Röder, Jens |m 103054641X:Röder, Jens |d 110000 |e 110000PR103054641X |k 0/110000/ |p 2 | ||
| 998 | |g 1163305731 |a Hanselmann, Michael |m 1163305731:Hanselmann, Michael |d 700000 |d 708070 |e 700000PH1163305731 |e 708070PH1163305731 |k 0/700000/ |k 1/700000/708070/ |p 1 |x j | ||
| 999 | |a KXP-PPN1577905865 |e 3019458641 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1577905865","name":{"displayForm":["Michael Hanselmann, Jens Röder, Ullrich Köthe, Bernhard Y. Renard, Ron M.A. Heeren, and Fred A. Hamprecht"]},"physDesc":[{"extent":"9 S."}],"relHost":[{"recId":"300896530","pubHistory":["19.1947 -"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Chemical Society"]},"id":{"zdb":["1483443-1"],"eki":["300896530"],"issn":["1520-6882"]},"disp":"Active learning for convenient annotation and classification of secondary ion mass spectrometry imagesAnalytical chemistry","language":["eng"],"part":{"issue":"1","extent":"9","volume":"85","year":"2013","pages":"147-155","text":"85(2013), 1, Seite 147-155"},"origin":[{"dateIssuedDisp":"1947-","publisherPlace":"Columbus, Ohio","publisher":"American Chemical Society","dateIssuedKey":"1947"}],"note":["Gesehen am 27.08.2020","Ungezählte Beil.: News & features"],"title":[{"title":"Analytical chemistry","title_sort":"Analytical chemistry","subtitle":"the authoritative voice of the analytical community"}],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"id":{"eki":["1577905865"],"doi":["10.1021/ac3023313"]},"person":[{"given":"Michael","role":"aut","display":"Hanselmann, Michael","family":"Hanselmann"},{"display":"Röder, Jens","family":"Röder","given":"Jens","role":"aut"},{"role":"aut","given":"Ullrich","display":"Köthe, Ullrich","family":"Köthe"},{"family":"Hamprecht","display":"Hamprecht, Fred","given":"Fred","role":"aut"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Publication date: November 16, 2012","Gesehen am 24.07.2018"],"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"2013"}],"title":[{"title":"Active learning for convenient annotation and classification of secondary ion mass spectrometry images","title_sort":"Active learning for convenient annotation and classification of secondary ion mass spectrometry images"}]} | ||
| SRT | |a HANSELMANNACTIVELEAR2013 | ||