A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients

This paper is devoted to the analysis of measure-valued solutions to a nonlinear structured population model given in the form of a nonlocal first-order hyperbolic problem on R+. We show global existence and Lipschitz continuity with respect to the model ingredients. In distinction to previous studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gwiazda, Piotr (VerfasserIn) , Lorenz, Thomas (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2 March 2010
In: Journal of differential equations
Year: 2010, Jahrgang: 248, Heft: 11, Pages: 2703-2735
ISSN:1090-2732
DOI:10.1016/j.jde.2010.02.010
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1016/j.jde.2010.02.010
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0022039610000586
Volltext
Verfasserangaben:Piotr Gwiazda, Thomas Lorenz, Anna Marciniak-Czochra

MARC

LEADER 00000caa a2200000 c 4500
001 1577947983
003 DE-627
005 20220814201537.0
007 cr uuu---uuuuu
008 180725s2010 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jde.2010.02.010  |2 doi 
035 |a (DE-627)1577947983 
035 |a (DE-576)507947983 
035 |a (DE-599)BSZ507947983 
035 |a (OCoLC)1341014520 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gwiazda, Piotr  |e VerfasserIn  |0 (DE-588)1053844778  |0 (DE-627)790792699  |0 (DE-576)409783250  |4 aut 
245 1 2 |a A nonlinear structured population model  |b Lipschitz continuity of measure-valued solutions with respect to model ingredients  |c Piotr Gwiazda, Thomas Lorenz, Anna Marciniak-Czochra 
264 1 |c 2 March 2010 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.07.2018 
520 |a This paper is devoted to the analysis of measure-valued solutions to a nonlinear structured population model given in the form of a nonlocal first-order hyperbolic problem on R+. We show global existence and Lipschitz continuity with respect to the model ingredients. In distinction to previous studies, where the L1 norm was used, we apply the flat metric, similar to the Wasserstein W1 distance. We argue that analysis using this metric, in addition to mathematical advantages, is consistent with intuitive understanding of empirical data. Lipschitz continuous dependence with respect to the model coefficients and initial data and the uniqueness of the weak solutions are shown under the assumption on the Lipschitz continuity of the kinetic functions. The proof of this result is based on the duality formula and the Gronwall-type argument. 
650 4 |a Flat metric 
650 4 |a Lipschitz continuity with respect to model ingredients 
650 4 |a Population dynamics 
650 4 |a Radon measures 
650 4 |a Structured population model 
700 1 |a Lorenz, Thomas  |d 1974-  |e VerfasserIn  |0 (DE-588)131512617  |0 (DE-627)510159974  |0 (DE-576)298555530  |4 aut 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
773 0 8 |i Enthalten in  |t Journal of differential equations  |d Orlando, Fla. : Elsevier, 1965  |g 248(2010), 11, Seite 2703-2735  |h Online-Ressource  |w (DE-627)266892566  |w (DE-600)1469173-5  |w (DE-576)103373209  |x 1090-2732  |7 nnas  |a A nonlinear structured population model Lipschitz continuity of measure-valued solutions with respect to model ingredients 
773 1 8 |g volume:248  |g year:2010  |g number:11  |g pages:2703-2735  |g extent:33  |a A nonlinear structured population model Lipschitz continuity of measure-valued solutions with respect to model ingredients 
856 4 0 |u http://dx.doi.org/10.1016/j.jde.2010.02.010  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0022039610000586  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180725 
993 |a Article 
994 |a 2010 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 700000  |d 708000  |e 700000PM1044379626  |e 708000PM1044379626  |k 0/700000/  |k 1/700000/708000/  |p 3  |y j 
999 |a KXP-PPN1577947983  |e 3019521025 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"33 S."}],"name":{"displayForm":["Piotr Gwiazda, Thomas Lorenz, Anna Marciniak-Czochra"]},"recId":"1577947983","id":{"doi":["10.1016/j.jde.2010.02.010"],"eki":["1577947983"]},"relHost":[{"id":{"issn":["1090-2732"],"eki":["266892566"],"zdb":["1469173-5"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"266892566","pubHistory":["1.1965 -"],"part":{"volume":"248","extent":"33","text":"248(2010), 11, Seite 2703-2735","pages":"2703-2735","year":"2010","issue":"11"},"note":["Gesehen am 16.07.13"],"origin":[{"publisher":"Elsevier ; Academic Press ; Academic Press","dateIssuedKey":"1965","dateIssuedDisp":"1965-","publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla."}],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Journal of differential equations","title_sort":"Journal of differential equations"}],"language":["eng"],"disp":"A nonlinear structured population model Lipschitz continuity of measure-valued solutions with respect to model ingredientsJournal of differential equations"}],"person":[{"family":"Gwiazda","display":"Gwiazda, Piotr","role":"aut","given":"Piotr"},{"display":"Lorenz, Thomas","family":"Lorenz","role":"aut","given":"Thomas"},{"display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra","role":"aut","given":"Anna"}],"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"2 March 2010"}],"note":["Gesehen am 25.07.2018"],"title":[{"title":"A nonlinear structured population model","subtitle":"Lipschitz continuity of measure-valued solutions with respect to model ingredients","title_sort":"nonlinear structured population model"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"]} 
SRT |a GWIAZDAPIONONLINEARS2201