Structured population equations in metric spaces
In this paper, a framework for the analysis of measure-valued solutions of the nonlinear structured population model is presented. Existence and Lipschitz dependence of the solutions on the model parameters and initial data are shown by proving convergence of a variational approximation scheme, defi...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2010
|
| In: |
Journal of hyperbolic differential equations
Year: 2010, Jahrgang: 07, Heft: 04, Pages: 733-773 |
| ISSN: | 1793-6993 |
| DOI: | 10.1142/S021989161000227X |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1142/S021989161000227X Verlag, Volltext: https://www.worldscientific.com/doi/10.1142/S021989161000227X |
| Verfasserangaben: | Piotr Gwiazda, Anna Marciniak-Czochra |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 157794819X | ||
| 003 | DE-627 | ||
| 005 | 20220814201555.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180725s2010 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1142/S021989161000227X |2 doi | |
| 035 | |a (DE-627)157794819X | ||
| 035 | |a (DE-576)50794819X | ||
| 035 | |a (DE-599)BSZ50794819X | ||
| 035 | |a (OCoLC)1341014491 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Gwiazda, Piotr |e VerfasserIn |0 (DE-588)1053844778 |0 (DE-627)790792699 |0 (DE-576)409783250 |4 aut | |
| 245 | 1 | 0 | |a Structured population equations in metric spaces |c Piotr Gwiazda, Anna Marciniak-Czochra |
| 264 | 1 | |c 2010 | |
| 300 | |a 41 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 25.07.2018 | ||
| 520 | |a In this paper, a framework for the analysis of measure-valued solutions of the nonlinear structured population model is presented. Existence and Lipschitz dependence of the solutions on the model parameters and initial data are shown by proving convergence of a variational approximation scheme, defined in the terms of a suitable metric space. The estimates for a corresponding linear model are used based on the duality formula for transport equations. An extension of a Wasserstein metric to the measures with integrable first moment is proposed to cope with the nonconservative character of the model. This metric is compared with a bounded Lipschitz distance, also called a flat metric, and the results are discussed in the context of applications to biological data. | ||
| 700 | 1 | |a Marciniak-Czochra, Anna |d 1974- |e VerfasserIn |0 (DE-588)1044379626 |0 (DE-627)771928432 |0 (DE-576)397031505 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of hyperbolic differential equations |d London [u.a.] : World Scientific, 2004 |g 07(2010), 04, Seite 733-773 |h Online-Ressource |w (DE-627)389869937 |w (DE-600)2149669-9 |w (DE-576)113850255 |x 1793-6993 |7 nnas |a Structured population equations in metric spaces |
| 773 | 1 | 8 | |g volume:07 |g year:2010 |g number:04 |g pages:733-773 |g extent:41 |a Structured population equations in metric spaces |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1142/S021989161000227X |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://www.worldscientific.com/doi/10.1142/S021989161000227X |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180725 | ||
| 993 | |a Article | ||
| 994 | |a 2010 | ||
| 998 | |g 1044379626 |a Marciniak-Czochra, Anna |m 1044379626:Marciniak-Czochra, Anna |d 700000 |d 708000 |e 700000PM1044379626 |e 708000PM1044379626 |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 999 | |a KXP-PPN157794819X |e 3019521378 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"389869937","pubHistory":["1.2004 -"],"id":{"zdb":["2149669-9"],"issn":["1793-6993"],"eki":["389869937"]},"disp":"Structured population equations in metric spacesJournal of hyperbolic differential equations","part":{"extent":"41","volume":"07","year":"2010","text":"07(2010), 04, Seite 733-773","pages":"733-773","issue":"04"},"note":["Gesehen am 25.09.2018"],"origin":[{"publisher":"World Scientific","dateIssuedKey":"2004","dateIssuedDisp":"2004-","publisherPlace":"London [u.a.]"}],"title":[{"title":"Journal of hyperbolic differential equations","title_sort":"Journal of hyperbolic differential equations","subtitle":"JHDE"}],"titleAlt":[{"title":"JHDE"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"]}],"id":{"doi":["10.1142/S021989161000227X"],"eki":["157794819X"]},"name":{"displayForm":["Piotr Gwiazda, Anna Marciniak-Czochra"]},"physDesc":[{"extent":"41 S."}],"recId":"157794819X","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 25.07.2018"],"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"2010"}],"title":[{"title_sort":"Structured population equations in metric spaces","title":"Structured population equations in metric spaces"}],"language":["eng"],"person":[{"given":"Piotr","role":"aut","display":"Gwiazda, Piotr","family":"Gwiazda"},{"role":"aut","given":"Anna","display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra"}]} | ||
| SRT | |a GWIAZDAPIOSTRUCTURED2010 | ||