Structured population equations in metric spaces

In this paper, a framework for the analysis of measure-valued solutions of the nonlinear structured population model is presented. Existence and Lipschitz dependence of the solutions on the model parameters and initial data are shown by proving convergence of a variational approximation scheme, defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gwiazda, Piotr (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2010
In: Journal of hyperbolic differential equations
Year: 2010, Jahrgang: 07, Heft: 04, Pages: 733-773
ISSN:1793-6993
DOI:10.1142/S021989161000227X
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1142/S021989161000227X
Verlag, Volltext: https://www.worldscientific.com/doi/10.1142/S021989161000227X
Volltext
Verfasserangaben:Piotr Gwiazda, Anna Marciniak-Czochra

MARC

LEADER 00000caa a2200000 c 4500
001 157794819X
003 DE-627
005 20220814201555.0
007 cr uuu---uuuuu
008 180725s2010 xx |||||o 00| ||eng c
024 7 |a 10.1142/S021989161000227X  |2 doi 
035 |a (DE-627)157794819X 
035 |a (DE-576)50794819X 
035 |a (DE-599)BSZ50794819X 
035 |a (OCoLC)1341014491 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gwiazda, Piotr  |e VerfasserIn  |0 (DE-588)1053844778  |0 (DE-627)790792699  |0 (DE-576)409783250  |4 aut 
245 1 0 |a Structured population equations in metric spaces  |c Piotr Gwiazda, Anna Marciniak-Czochra 
264 1 |c 2010 
300 |a 41 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.07.2018 
520 |a In this paper, a framework for the analysis of measure-valued solutions of the nonlinear structured population model is presented. Existence and Lipschitz dependence of the solutions on the model parameters and initial data are shown by proving convergence of a variational approximation scheme, defined in the terms of a suitable metric space. The estimates for a corresponding linear model are used based on the duality formula for transport equations. An extension of a Wasserstein metric to the measures with integrable first moment is proposed to cope with the nonconservative character of the model. This metric is compared with a bounded Lipschitz distance, also called a flat metric, and the results are discussed in the context of applications to biological data. 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
773 0 8 |i Enthalten in  |t Journal of hyperbolic differential equations  |d London [u.a.] : World Scientific, 2004  |g 07(2010), 04, Seite 733-773  |h Online-Ressource  |w (DE-627)389869937  |w (DE-600)2149669-9  |w (DE-576)113850255  |x 1793-6993  |7 nnas  |a Structured population equations in metric spaces 
773 1 8 |g volume:07  |g year:2010  |g number:04  |g pages:733-773  |g extent:41  |a Structured population equations in metric spaces 
856 4 0 |u http://dx.doi.org/10.1142/S021989161000227X  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://www.worldscientific.com/doi/10.1142/S021989161000227X  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180725 
993 |a Article 
994 |a 2010 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 700000  |d 708000  |e 700000PM1044379626  |e 708000PM1044379626  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
999 |a KXP-PPN157794819X  |e 3019521378 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"389869937","pubHistory":["1.2004 -"],"id":{"zdb":["2149669-9"],"issn":["1793-6993"],"eki":["389869937"]},"disp":"Structured population equations in metric spacesJournal of hyperbolic differential equations","part":{"extent":"41","volume":"07","year":"2010","text":"07(2010), 04, Seite 733-773","pages":"733-773","issue":"04"},"note":["Gesehen am 25.09.2018"],"origin":[{"publisher":"World Scientific","dateIssuedKey":"2004","dateIssuedDisp":"2004-","publisherPlace":"London [u.a.]"}],"title":[{"title":"Journal of hyperbolic differential equations","title_sort":"Journal of hyperbolic differential equations","subtitle":"JHDE"}],"titleAlt":[{"title":"JHDE"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"]}],"id":{"doi":["10.1142/S021989161000227X"],"eki":["157794819X"]},"name":{"displayForm":["Piotr Gwiazda, Anna Marciniak-Czochra"]},"physDesc":[{"extent":"41 S."}],"recId":"157794819X","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 25.07.2018"],"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"2010"}],"title":[{"title_sort":"Structured population equations in metric spaces","title":"Structured population equations in metric spaces"}],"language":["eng"],"person":[{"given":"Piotr","role":"aut","display":"Gwiazda, Piotr","family":"Gwiazda"},{"role":"aut","given":"Anna","display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra"}]} 
SRT |a GWIAZDAPIOSTRUCTURED2010