Robust classification of single-cell transcriptome data by nonnegative matrix factorization

AbstractMotivation. Single-cell transcriptome data provide unprecedented resolution to study heterogeneity in cell populations and present a challenge for unsu

Saved in:
Bibliographic Details
Main Authors: Shao, Chunxuan (Author) , Höfer, Thomas (Author)
Format: Article (Journal)
Language:English
Published: 2017
In: Bioinformatics
Year: 2016, Volume: 33, Issue: 2, Pages: 235-242
ISSN:1367-4811
DOI:10.1093/bioinformatics/btw607
Online Access:Verlag, Volltext: http://dx.doi.org/10.1093/bioinformatics/btw607
Verlag, Volltext: https://academic.oup.com/bioinformatics/article/33/2/235/2525715
Get full text
Author Notes:Chunxuan Shao and Thomas Höfer
Description
Summary:AbstractMotivation. Single-cell transcriptome data provide unprecedented resolution to study heterogeneity in cell populations and present a challenge for unsu
Item Description:Advance access publication date: 23 September 2016
Gesehen am 27.07.2018
Physical Description:Online Resource
ISSN:1367-4811
DOI:10.1093/bioinformatics/btw607