An entropic perturbation approach to TV-minimization for limited-data tomography

The reconstruction problem of discrete tomography is studied using novel techniques from compressive sensing. Recent theoretical results of the authors enable to predict the number of measurements required for the unique reconstruction of a class of cosparse dense 2D and 3D signals in severely under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deniţiu, Andreea (VerfasserIn) , Petra, Stefania (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2014
In: Discrete Geometry for Computer Imagery
Year: 2014, Pages: 262-274
DOI:10.1007/978-3-319-09955-2_22
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-319-09955-2_22
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-09955-2_22
Volltext
Verfasserangaben:Andreea Deniţiu, Stefania Petra, Claudius Schnörr, Christoph Schnörr

MARC

LEADER 00000caa a22000002c 4500
001 1578018382
003 DE-627
005 20220814202727.0
007 cr uuu---uuuuu
008 180727s2014 xx |||||o 00| ||eng c
024 7 |a 10.1007/978-3-319-09955-2_22  |2 doi 
035 |a (DE-627)1578018382 
035 |a (DE-576)508018382 
035 |a (DE-599)BSZ508018382 
035 |a (OCoLC)1341014591 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Deniţiu, Andreea  |e VerfasserIn  |0 (DE-588)1114310603  |0 (DE-627)868592641  |0 (DE-576)477284477  |4 aut 
245 1 3 |a An entropic perturbation approach to TV-minimization for limited-data tomography  |c Andreea Deniţiu, Stefania Petra, Claudius Schnörr, Christoph Schnörr 
264 1 |c 2014 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.07.2018 
520 |a The reconstruction problem of discrete tomography is studied using novel techniques from compressive sensing. Recent theoretical results of the authors enable to predict the number of measurements required for the unique reconstruction of a class of cosparse dense 2D and 3D signals in severely undersampled scenarios by convex programming. These results extend established ℓ1-related theory based on sparsity of the signal itself to novel scenarios not covered so far, including tomographic projections of 3D solid bodies composed of few different materials. As a consequence, the large-scale optimization task based on total-variation minimization subject to tomographic projection constraints is considerably more complex than basic ℓ1-programming for sparse regularization. We propose an entropic perturbation of the objective that enables to apply efficient methodologies from unconstrained optimization to the perturbed dual program. Numerical results validate the theory for large-scale recovery problems of integer-valued functions that exceed the capacity of the commercial MOSEK software. 
700 1 |a Petra, Stefania  |e VerfasserIn  |0 (DE-588)1065905580  |0 (DE-627)816924961  |0 (DE-576)425560155  |4 aut 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
773 0 8 |i Enthalten in  |t Discrete Geometry for Computer Imagery  |d Cham [u.a.] : Springer, 2014  |g (2014), Seite 262-274  |h Online-Ressource (XII, 423 p. 205 illus, online resource)  |w (DE-627)1659286646  |w (DE-576)415351235  |z 9783319099552  |7 nnam  |a An entropic perturbation approach to TV-minimization for limited-data tomography 
773 1 8 |g year:2014  |g pages:262-274  |g extent:13  |a An entropic perturbation approach to TV-minimization for limited-data tomography 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-09955-2_22  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/chapter/10.1007/978-3-319-09955-2_22  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180727 
993 |a ConferencePaper 
994 |a 2014 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 700000  |d 708000  |e 700000PS1023033348  |e 708000PS1023033348  |k 0/700000/  |k 1/700000/708000/  |p 4  |y j 
998 |g 1065905580  |a Petra, Stefania  |m 1065905580:Petra, Stefania  |d 700000  |d 708000  |e 700000PP1065905580  |e 708000PP1065905580  |k 0/700000/  |k 1/700000/708000/  |p 2 
998 |g 1114310603  |a Deniţiu, Andreea  |m 1114310603:Deniţiu, Andreea  |d 700000  |d 708070  |e 700000PD1114310603  |e 708070PD1114310603  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1578018382  |e 3019658152 
BIB |a Y 
JSO |a {"person":[{"display":"Deniţiu, Andreea","family":"Deniţiu","role":"aut","given":"Andreea"},{"family":"Petra","display":"Petra, Stefania","given":"Stefania","role":"aut"},{"display":"Schnörr, Christoph","family":"Schnörr","given":"Christoph","role":"aut"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 27.07.2018"],"origin":[{"dateIssuedDisp":"2014","dateIssuedKey":"2014"}],"title":[{"title_sort":"entropic perturbation approach to TV-minimization for limited-data tomography","title":"An entropic perturbation approach to TV-minimization for limited-data tomography"}],"language":["eng"],"name":{"displayForm":["Andreea Deniţiu, Stefania Petra, Claudius Schnörr, Christoph Schnörr"]},"physDesc":[{"extent":"13 S."}],"recId":"1578018382","relHost":[{"language":["eng"],"note":["Literaturangaben"],"person":[{"family":"Barcucci","display":"Barcucci, Elena","given":"Elena","role":"edt"}],"recId":"1659286646","name":{"displayForm":["edited by Elena Barcucci, Andrea Frosini, Simone Rinaldi"]},"physDesc":[{"extent":"Online-Ressource (XII, 423 p. 205 illus, online resource)"}],"relMultPart":[{"disp":"Lecture Notes in Computer Science","part":{"number_sort":["8668"],"number":["8668"]},"titleAlt":[{"title":"LNCS online"},{"title":"LNAI"},{"title":"Lecture notes in artificial intelligence"},{"title":"Lecture notes in bioinformatics"},{"title":"LNAI"},{"title":"LNBI"},{"title":"LNCS-LNAI"},{"title":"LNCS-LNBI"}],"origin":[{"publisher":"Springer","dateIssuedKey":"1973","dateIssuedDisp":"1973-","publisherPlace":"Berlin ; Heidelberg"}],"title":[{"title":"Lecture notes in computer science","title_sort":"Lecture notes in computer science"}],"type":{"bibl":"serial","media":"Online-Ressource"},"pubHistory":["1.1973 -"],"dispAlt":"Lecture notes in computer science","id":{"issn":["1611-3349"],"eki":["316228877"],"zdb":["2018930-8"]},"language":["eng"],"note":["Gesehen am 28.02.20","Das Gesamtwerk gliedert sich in: Lecture notes in artificial intelligence; Lecture notes in bioinformatics"],"recId":"316228877","physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2014","publisher":"Springer","dateIssuedDisp":"2014","publisherPlace":"Cham [u.a.]"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"title":[{"title":"Discrete Geometry for Computer Imagery","title_sort":"Discrete Geometry for Computer Imagery","subtitle":"18th IAPR International Conference, DGCI 2014, Siena, Italy, September 10-12, 2014. Proceedings"}],"part":{"pages":"262-274","text":"(2014), Seite 262-274","year":"2014","extent":"13"},"disp":"An entropic perturbation approach to TV-minimization for limited-data tomographyDiscrete Geometry for Computer Imagery","id":{"doi":["10.1007/978-3-319-09955-2"],"eki":["1659286646"],"isbn":["9783319099552"]}}],"id":{"doi":["10.1007/978-3-319-09955-2_22"],"eki":["1578018382"]}} 
SRT |a DENITIUANDENTROPICPE2014