An entropic perturbation approach to TV-minimization for limited-data tomography
The reconstruction problem of discrete tomography is studied using novel techniques from compressive sensing. Recent theoretical results of the authors enable to predict the number of measurements required for the unique reconstruction of a class of cosparse dense 2D and 3D signals in severely under...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Kapitel/Artikel Konferenzschrift |
| Sprache: | Englisch |
| Veröffentlicht: |
2014
|
| In: |
Discrete Geometry for Computer Imagery
Year: 2014, Pages: 262-274 |
| DOI: | 10.1007/978-3-319-09955-2_22 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-319-09955-2_22 Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-09955-2_22 |
| Verfasserangaben: | Andreea Deniţiu, Stefania Petra, Claudius Schnörr, Christoph Schnörr |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1578018382 | ||
| 003 | DE-627 | ||
| 005 | 20220814202727.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180727s2014 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/978-3-319-09955-2_22 |2 doi | |
| 035 | |a (DE-627)1578018382 | ||
| 035 | |a (DE-576)508018382 | ||
| 035 | |a (DE-599)BSZ508018382 | ||
| 035 | |a (OCoLC)1341014591 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Deniţiu, Andreea |e VerfasserIn |0 (DE-588)1114310603 |0 (DE-627)868592641 |0 (DE-576)477284477 |4 aut | |
| 245 | 1 | 3 | |a An entropic perturbation approach to TV-minimization for limited-data tomography |c Andreea Deniţiu, Stefania Petra, Claudius Schnörr, Christoph Schnörr |
| 264 | 1 | |c 2014 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.07.2018 | ||
| 520 | |a The reconstruction problem of discrete tomography is studied using novel techniques from compressive sensing. Recent theoretical results of the authors enable to predict the number of measurements required for the unique reconstruction of a class of cosparse dense 2D and 3D signals in severely undersampled scenarios by convex programming. These results extend established ℓ1-related theory based on sparsity of the signal itself to novel scenarios not covered so far, including tomographic projections of 3D solid bodies composed of few different materials. As a consequence, the large-scale optimization task based on total-variation minimization subject to tomographic projection constraints is considerably more complex than basic ℓ1-programming for sparse regularization. We propose an entropic perturbation of the objective that enables to apply efficient methodologies from unconstrained optimization to the perturbed dual program. Numerical results validate the theory for large-scale recovery problems of integer-valued functions that exceed the capacity of the commercial MOSEK software. | ||
| 700 | 1 | |a Petra, Stefania |e VerfasserIn |0 (DE-588)1065905580 |0 (DE-627)816924961 |0 (DE-576)425560155 |4 aut | |
| 700 | 1 | |a Schnörr, Christoph |e VerfasserIn |0 (DE-588)1023033348 |0 (DE-627)717351017 |0 (DE-576)168404540 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Discrete Geometry for Computer Imagery |d Cham [u.a.] : Springer, 2014 |g (2014), Seite 262-274 |h Online-Ressource (XII, 423 p. 205 illus, online resource) |w (DE-627)1659286646 |w (DE-576)415351235 |z 9783319099552 |7 nnam |a An entropic perturbation approach to TV-minimization for limited-data tomography |
| 773 | 1 | 8 | |g year:2014 |g pages:262-274 |g extent:13 |a An entropic perturbation approach to TV-minimization for limited-data tomography |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-3-319-09955-2_22 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/chapter/10.1007/978-3-319-09955-2_22 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180727 | ||
| 993 | |a ConferencePaper | ||
| 994 | |a 2014 | ||
| 998 | |g 1023033348 |a Schnörr, Christoph |m 1023033348:Schnörr, Christoph |d 700000 |d 708000 |e 700000PS1023033348 |e 708000PS1023033348 |k 0/700000/ |k 1/700000/708000/ |p 4 |y j | ||
| 998 | |g 1065905580 |a Petra, Stefania |m 1065905580:Petra, Stefania |d 700000 |d 708000 |e 700000PP1065905580 |e 708000PP1065905580 |k 0/700000/ |k 1/700000/708000/ |p 2 | ||
| 998 | |g 1114310603 |a Deniţiu, Andreea |m 1114310603:Deniţiu, Andreea |d 700000 |d 708070 |e 700000PD1114310603 |e 708070PD1114310603 |k 0/700000/ |k 1/700000/708070/ |p 1 |x j | ||
| 999 | |a KXP-PPN1578018382 |e 3019658152 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"display":"Deniţiu, Andreea","family":"Deniţiu","role":"aut","given":"Andreea"},{"family":"Petra","display":"Petra, Stefania","given":"Stefania","role":"aut"},{"display":"Schnörr, Christoph","family":"Schnörr","given":"Christoph","role":"aut"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 27.07.2018"],"origin":[{"dateIssuedDisp":"2014","dateIssuedKey":"2014"}],"title":[{"title_sort":"entropic perturbation approach to TV-minimization for limited-data tomography","title":"An entropic perturbation approach to TV-minimization for limited-data tomography"}],"language":["eng"],"name":{"displayForm":["Andreea Deniţiu, Stefania Petra, Claudius Schnörr, Christoph Schnörr"]},"physDesc":[{"extent":"13 S."}],"recId":"1578018382","relHost":[{"language":["eng"],"note":["Literaturangaben"],"person":[{"family":"Barcucci","display":"Barcucci, Elena","given":"Elena","role":"edt"}],"recId":"1659286646","name":{"displayForm":["edited by Elena Barcucci, Andrea Frosini, Simone Rinaldi"]},"physDesc":[{"extent":"Online-Ressource (XII, 423 p. 205 illus, online resource)"}],"relMultPart":[{"disp":"Lecture Notes in Computer Science","part":{"number_sort":["8668"],"number":["8668"]},"titleAlt":[{"title":"LNCS online"},{"title":"LNAI"},{"title":"Lecture notes in artificial intelligence"},{"title":"Lecture notes in bioinformatics"},{"title":"LNAI"},{"title":"LNBI"},{"title":"LNCS-LNAI"},{"title":"LNCS-LNBI"}],"origin":[{"publisher":"Springer","dateIssuedKey":"1973","dateIssuedDisp":"1973-","publisherPlace":"Berlin ; Heidelberg"}],"title":[{"title":"Lecture notes in computer science","title_sort":"Lecture notes in computer science"}],"type":{"bibl":"serial","media":"Online-Ressource"},"pubHistory":["1.1973 -"],"dispAlt":"Lecture notes in computer science","id":{"issn":["1611-3349"],"eki":["316228877"],"zdb":["2018930-8"]},"language":["eng"],"note":["Gesehen am 28.02.20","Das Gesamtwerk gliedert sich in: Lecture notes in artificial intelligence; Lecture notes in bioinformatics"],"recId":"316228877","physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2014","publisher":"Springer","dateIssuedDisp":"2014","publisherPlace":"Cham [u.a.]"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"title":[{"title":"Discrete Geometry for Computer Imagery","title_sort":"Discrete Geometry for Computer Imagery","subtitle":"18th IAPR International Conference, DGCI 2014, Siena, Italy, September 10-12, 2014. Proceedings"}],"part":{"pages":"262-274","text":"(2014), Seite 262-274","year":"2014","extent":"13"},"disp":"An entropic perturbation approach to TV-minimization for limited-data tomographyDiscrete Geometry for Computer Imagery","id":{"doi":["10.1007/978-3-319-09955-2"],"eki":["1659286646"],"isbn":["9783319099552"]}}],"id":{"doi":["10.1007/978-3-319-09955-2_22"],"eki":["1578018382"]}} | ||
| SRT | |a DENITIUANDENTROPICPE2014 | ||