On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion

This paper consists of three parts. In Section 2, the Cauchy problem for general reaction-convection equations with a special diffusion term G(u)=um in multidimensional space is studied and Hölder estimates of weak solutions with explicit Hölder exponents are obtained by applying the maximum princ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lu, Yunguang (VerfasserIn) , Jäger, Willi (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 May 2002
In: Journal of differential equations
Year: 2001, Jahrgang: 170, Heft: 1, Pages: 1-21
ISSN:1090-2732
DOI:10.1006/jdeq.2000.3800
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1006/jdeq.2000.3800
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0022039600938002
Volltext
Verfasserangaben:Yunguang Lu and Willi Jäger
Beschreibung
Zusammenfassung:This paper consists of three parts. In Section 2, the Cauchy problem for general reaction-convection equations with a special diffusion term G(u)=um in multidimensional space is studied and Hölder estimates of weak solutions with explicit Hölder exponents are obtained by applying the maximum principle. In Section 3, for any nondecreasing smooth function G, the sharp regularity estimate G(u)∈C(1) up to the boundaries for the radial solution u of the general equation of Newtonian filtration is obtained by applying the maximum principle with the Minty's device. A direct by-product is the sharp regularity estimate of the temperature to the classical two-phase Stefan model. In Section 4, the Hölder continuity of weak solutions of the initial-boundary value problem for general nonlinear reaction-diffusion-convection equations is considered. Under the critical condition on the diffusion function G:meas{u:G′(u)=g(u)=0}=0, we obtain a Hölder continuous solution u and the sharp regularity estimate G(u)∈C(1) up to the boundaries. Our proof is based on the maximum principle.
Beschreibung:Available online 25 May 2002
Gesehen am 30.07.2018
Beschreibung:Online Resource
ISSN:1090-2732
DOI:10.1006/jdeq.2000.3800