On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion
This paper consists of three parts. In Section 2, the Cauchy problem for general reaction-convection equations with a special diffusion term G(u)=um in multidimensional space is studied and Hölder estimates of weak solutions with explicit Hölder exponents are obtained by applying the maximum princ...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
25 May 2002
|
| In: |
Journal of differential equations
Year: 2001, Jahrgang: 170, Heft: 1, Pages: 1-21 |
| ISSN: | 1090-2732 |
| DOI: | 10.1006/jdeq.2000.3800 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1006/jdeq.2000.3800 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0022039600938002 |
| Verfasserangaben: | Yunguang Lu and Willi Jäger |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1578069785 | ||
| 003 | DE-627 | ||
| 005 | 20220814203505.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180730r20022001xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1006/jdeq.2000.3800 |2 doi | |
| 035 | |a (DE-627)1578069785 | ||
| 035 | |a (DE-576)508069785 | ||
| 035 | |a (DE-599)BSZ508069785 | ||
| 035 | |a (OCoLC)1341015004 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Lu, Yunguang |e VerfasserIn |0 (DE-588)172763983 |0 (DE-627)697695166 |0 (DE-576)133620905 |4 aut | |
| 245 | 1 | 0 | |a On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion |c Yunguang Lu and Willi Jäger |
| 264 | 1 | |c 25 May 2002 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 25 May 2002 | ||
| 500 | |a Gesehen am 30.07.2018 | ||
| 520 | |a This paper consists of three parts. In Section 2, the Cauchy problem for general reaction-convection equations with a special diffusion term G(u)=um in multidimensional space is studied and Hölder estimates of weak solutions with explicit Hölder exponents are obtained by applying the maximum principle. In Section 3, for any nondecreasing smooth function G, the sharp regularity estimate G(u)∈C(1) up to the boundaries for the radial solution u of the general equation of Newtonian filtration is obtained by applying the maximum principle with the Minty's device. A direct by-product is the sharp regularity estimate of the temperature to the classical two-phase Stefan model. In Section 4, the Hölder continuity of weak solutions of the initial-boundary value problem for general nonlinear reaction-diffusion-convection equations is considered. Under the critical condition on the diffusion function G:meas{u:G′(u)=g(u)=0}=0, we obtain a Hölder continuous solution u and the sharp regularity estimate G(u)∈C(1) up to the boundaries. Our proof is based on the maximum principle. | ||
| 534 | |c 2001 | ||
| 700 | 1 | |a Jäger, Willi |d 1940- |e VerfasserIn |0 (DE-588)132750783 |0 (DE-627)526873094 |0 (DE-576)161561349 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of differential equations |d Orlando, Fla. : Elsevier, 1965 |g 170(2001), 1, Seite 1-21 |h Online-Ressource |w (DE-627)266892566 |w (DE-600)1469173-5 |w (DE-576)103373209 |x 1090-2732 |7 nnas |a On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion |
| 773 | 1 | 8 | |g volume:170 |g year:2001 |g number:1 |g pages:1-21 |g extent:21 |a On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1006/jdeq.2000.3800 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0022039600938002 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180730 | ||
| 993 | |a Article | ||
| 994 | |a 2001 | ||
| 998 | |g 132750783 |a Jäger, Willi |m 132750783:Jäger, Willi |d 700000 |d 708000 |d 110000 |d 110200 |d 110000 |d 110400 |e 700000PJ132750783 |e 708000PJ132750783 |e 110000PJ132750783 |e 110200PJ132750783 |e 110000PJ132750783 |e 110400PJ132750783 |k 0/700000/ |k 1/700000/708000/ |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 999 | |a KXP-PPN1578069785 |e 3019746876 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion","title_sort":"On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion"}],"person":[{"family":"Lu","given":"Yunguang","roleDisplay":"VerfasserIn","display":"Lu, Yunguang","role":"aut"},{"given":"Willi","family":"Jäger","role":"aut","roleDisplay":"VerfasserIn","display":"Jäger, Willi"}],"recId":"1578069785","language":["eng"],"note":["Available online 25 May 2002","Gesehen am 30.07.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1006/jdeq.2000.3800"],"eki":["1578069785"]},"origin":[{"dateIssuedKey":"2002","dateIssuedDisp":"25 May 2002"}],"name":{"displayForm":["Yunguang Lu and Willi Jäger"]},"relHost":[{"part":{"pages":"1-21","issue":"1","year":"2001","extent":"21","text":"170(2001), 1, Seite 1-21","volume":"170"},"pubHistory":["1.1965 -"],"language":["eng"],"recId":"266892566","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusionJournal of differential equations","note":["Gesehen am 16.07.13"],"title":[{"title":"Journal of differential equations","title_sort":"Journal of differential equations"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1469173-5"],"eki":["266892566"],"issn":["1090-2732"]},"origin":[{"publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedKey":"1965","publisher":"Elsevier ; Academic Press ; Academic Press","dateIssuedDisp":"1965-"}]}],"physDesc":[{"extent":"21 S."}]} | ||
| SRT | |a LUYUNGUANGONSOLUTION2520 | ||