Tissue classification for laparoscopic image understanding based on multispectral texture analysis

Intraoperative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Yan (VerfasserIn) , Kenngott, Hannes Götz (VerfasserIn) , Wagner, Martin (VerfasserIn) , Mayer, Benjamin (VerfasserIn) , Stock, Christian (VerfasserIn) , Maier-Hein, Lena (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 January 2017
In: Journal of medical imaging
Year: 2017, Jahrgang: 4, Heft: 1, Pages: 4
ISSN:2329-4310
DOI:10.1117/1.JMI.4.1.015001
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1117/1.JMI.4.1.015001
Verlag, Volltext: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging/volume-4/issue-1/015001/Tissue-classification-for-laparoscopic-image-understanding-based-on-multispectral-texture/10.1117/1.JMI.4.1.015001.short
Volltext
Verfasserangaben:Yan Zhang, Sebastian Wirkert, Justin Iszatt, Hannes Kenngott, Martin Wagner, Benjamin Mayer, Christian Stock, Neil T. Clancy, Daniel S. Elson, Lena Maier-Hein
Beschreibung
Zusammenfassung:Intraoperative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive <italic>ex vivo</italic> study through statistical analysis, we show that (1) multispectral imaging data are superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) combining the tissue texture with the reflectance spectrum improves the classification performance. The classifier reaches an accuracy of 98.4% on our dataset. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.
Beschreibung:Gesehen am 01.08.2018
Beschreibung:Online Resource
ISSN:2329-4310
DOI:10.1117/1.JMI.4.1.015001