Transition voltage spectroscopy in vacuum break junction: the standard tunneling barrier model and beyond

Recent experiments on transition voltage (Vt) spectroscopy in mechanically controllable vacuum break junctions have been interpreted theoretically by using a Simmons WKB-type approach of the transport by tunneling based on the standard vacuum barrier picture (work function + source-drain bias + char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bâldea, Ioan (VerfasserIn) , Köppel, Horst (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 May 2012
In: Physica status solidi. B, Basic solid state physics
Year: 2012, Jahrgang: 249, Heft: 9, Pages: 1791-1804
ISSN:1521-3951
DOI:10.1002/pssb.201248034
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1002/pssb.201248034
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.201248034
Volltext
Verfasserangaben:Ioan Bâldea and Horst Köppel
Beschreibung
Zusammenfassung:Recent experiments on transition voltage (Vt) spectroscopy in mechanically controllable vacuum break junctions have been interpreted theoretically by using a Simmons WKB-type approach of the transport by tunneling based on the standard vacuum barrier picture (work function + source-drain bias + charge images). In the first part of the paper, we present an analysis demonstrating the inconsistencies of that approach. Then, we report detailed results obtained by exactly solving the Schrödinger equation, which show that the standard tunneling barrier model fails to describe the experimental vacuum transition voltage spectroscopy (TVS) data. This indicates that the physical description within that model is incomplete. In the attempt to go beyond the standard barrier model, we report results demonstrating that the inclusion of electron states at the electrodes' surface significantly improves the agreement with experiment. This applies both to the d-dependence of Vt and to the jump in the linear conductance when approaching the atomic contact limit.
Beschreibung:Published online 17 May 2012
Gesehen am 03.08.2018
Beschreibung:Online Resource
ISSN:1521-3951
DOI:10.1002/pssb.201248034