Computing covariance matrices for constrained nonlinear large scale parameter estimation problems using Krylov subspace methods

In the paper we show how, based on the preconditioned Krylov subspace methods, to compute the covariance matrix of parameter estimates, which is crucial for efficient methods of optimum experimental design.

Saved in:
Bibliographic Details
Main Authors: Kostina, Ekaterina (Author) , Kostjukova, Ol'ga I. (Author)
Format: Chapter/Article
Language:English
Published: 2012
In: Constrained Optimization and Optimal Control for Partial Differential Equations
Year: 2011, Pages: 197-212
DOI:10.1007/978-3-0348-0133-1_11
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-0348-0133-1_11
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-0348-0133-1_11
Get full text
Author Notes:Ekaterina Kostina, Olga Kostyukova
Description
Summary:In the paper we show how, based on the preconditioned Krylov subspace methods, to compute the covariance matrix of parameter estimates, which is crucial for efficient methods of optimum experimental design.
Item Description:First online: 28 October 2011
Gesehen am 03.08.2018
Physical Description:Online Resource
ISBN:9783034801331
DOI:10.1007/978-3-0348-0133-1_11