Spectral element method for parabolic initial value problem with non-smooth data: analysis and application

In this paper, a least-squares spectral element method for parabolic initial value problem for two space dimension on parallel computers is presented. The theory is also valid for three dimension. This method gives exponential accuracy in both space and time. The method is based on minimization of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khan, Arbaz (VerfasserIn) , Dutt, Pravir (VerfasserIn) , Upadhyay, Chandra Shekhar (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 May 2017
In: Journal of scientific computing
Year: 2017, Jahrgang: 73, Heft: 2-3, Pages: 876-905
ISSN:1573-7691
DOI:10.1007/s10915-017-0457-0
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s10915-017-0457-0
Verlag, Volltext: https://link.springer.com/article/10.1007/s10915-017-0457-0
Volltext
Verfasserangaben:Arbaz Khan, Pravir Dutt, Chandra Shekhar Upadhyay

MARC

LEADER 00000caa a2200000 c 4500
001 1580094384
003 DE-627
005 20220814221249.0
007 cr uuu---uuuuu
008 180816s2017 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-017-0457-0  |2 doi 
035 |a (DE-627)1580094384 
035 |a (DE-576)510094384 
035 |a (DE-599)BSZ510094384 
035 |a (OCoLC)1341016888 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Khan, Arbaz  |e VerfasserIn  |0 (DE-588)1164608665  |0 (DE-627)1028980418  |0 (DE-576)510093647  |4 aut 
245 1 0 |a Spectral element method for parabolic initial value problem with non-smooth data  |b analysis and application  |c Arbaz Khan, Pravir Dutt, Chandra Shekhar Upadhyay 
264 1 |c 23 May 2017 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.08.2018 
520 |a In this paper, a least-squares spectral element method for parabolic initial value problem for two space dimension on parallel computers is presented. The theory is also valid for three dimension. This method gives exponential accuracy in both space and time. The method is based on minimization of residuals in terms of the partial differential equation and initial condition, in different Sobolev norms, and a term which measures the jump in the function and its derivatives across inter-element boundaries in appropriate fractional Sobolev norms. Rigorous error estimates for this method are given. Some specific numerical examples are solved to show the efficiency of this method. 
700 1 |a Dutt, Pravir  |e VerfasserIn  |0 (DE-588)1164608886  |0 (DE-627)1028980493  |0 (DE-576)510093590  |4 aut 
700 1 |a Upadhyay, Chandra Shekhar  |d 1968-  |e VerfasserIn  |0 (DE-588)1164609483  |0 (DE-627)1028980795  |0 (DE-576)510094287  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986  |g 73(2017), 2-3, Seite 876-905  |h Online-Ressource  |w (DE-627)317878395  |w (DE-600)2017260-6  |w (DE-576)121466221  |x 1573-7691  |7 nnas  |a Spectral element method for parabolic initial value problem with non-smooth data analysis and application 
773 1 8 |g volume:73  |g year:2017  |g number:2-3  |g pages:876-905  |g extent:30  |a Spectral element method for parabolic initial value problem with non-smooth data analysis and application 
856 4 0 |u http://dx.doi.org/10.1007/s10915-017-0457-0  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s10915-017-0457-0  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180816 
993 |a Article 
994 |a 2017 
998 |g 1164608665  |a Khan, Arbaz  |m 1164608665:Khan, Arbaz  |d 700000  |d 708000  |e 700000PK1164608665  |e 708000PK1164608665  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1580094384  |e 3022438117 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Arbaz Khan, Pravir Dutt, Chandra Shekhar Upadhyay"]},"origin":[{"dateIssuedDisp":"23 May 2017","dateIssuedKey":"2017"}],"id":{"eki":["1580094384"],"doi":["10.1007/s10915-017-0457-0"]},"physDesc":[{"extent":"30 S."}],"relHost":[{"origin":[{"publisherPlace":"New York, NY [u.a.] ; London [u.a.]","dateIssuedKey":"1986","publisher":"Springer Science + Business Media B.V. ; Kluwer","dateIssuedDisp":"1986-"}],"id":{"issn":["1573-7691"],"zdb":["2017260-6"],"eki":["317878395"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of scientific computing","title_sort":"Journal of scientific computing"}],"note":["Gesehen am 01.11.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Spectral element method for parabolic initial value problem with non-smooth data analysis and applicationJournal of scientific computing","language":["eng"],"recId":"317878395","pubHistory":["1.1986 -"],"part":{"year":"2017","pages":"876-905","issue":"2-3","volume":"73","text":"73(2017), 2-3, Seite 876-905","extent":"30"}}],"person":[{"family":"Khan","given":"Arbaz","roleDisplay":"VerfasserIn","display":"Khan, Arbaz","role":"aut"},{"given":"Pravir","family":"Dutt","role":"aut","roleDisplay":"VerfasserIn","display":"Dutt, Pravir"},{"role":"aut","display":"Upadhyay, Chandra Shekhar","roleDisplay":"VerfasserIn","given":"Chandra Shekhar","family":"Upadhyay"}],"title":[{"title_sort":"Spectral element method for parabolic initial value problem with non-smooth data","subtitle":"analysis and application","title":"Spectral element method for parabolic initial value problem with non-smooth data"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 16.08.2018"],"language":["eng"],"recId":"1580094384"} 
SRT |a KHANARBAZDSPECTRALEL2320