SVM-based glioma grading: optimization by feature reduction analysis

We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation co...

Full description

Saved in:
Bibliographic Details
Main Authors: Zöllner, Frank G. (Author) , Schad, Lothar R. (Author)
Format: Article (Journal)
Language:English
Published: 13 April 2012
In: Zeitschrift für medizinische Physik
Year: 2012, Volume: 22, Issue: 3, Pages: 205-214
ISSN:1876-4436
DOI:10.1016/j.zemedi.2012.03.007
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.zemedi.2012.03.007
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0939388912000360
Get full text
Author Notes:Frank G. Zöllner, Kyrre E. Emblem, Lothar R. Schad
Search Result 1

SVM-based glioma grading: optimization by feature reduction analysis by Zöllner, Frank G. (Author) , Emblem, Kyrre E. (Author) , Schad, Lothar R. (Author) ,


Get full text
Article (Journal)