On the interface boundary condition of Beavers, Joseph, and Saffman

We consider the laminar viscous channel flow over a porous surface. It is supposed, as in the experiment by Beavers and Joseph, that a uniform pressure gradient is maintained in the longitudinal direction in both the channel and the porous medium. After studying the corresponding boundary layers, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jäger, Willi (VerfasserIn) , Mikelić, Andro (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 23, 2000
In: SIAM journal on applied mathematics
Year: 2000, Jahrgang: 60, Heft: 4, Pages: 1111-1127
ISSN:1095-712X
DOI:10.1137/S003613999833678X
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1137/S003613999833678X
Verlag, Volltext: https://epubs.siam.org/doi/abs/10.1137/S003613999833678X
Volltext
Verfasserangaben:Willi Jäger and Andro Mikelić
Beschreibung
Zusammenfassung:We consider the laminar viscous channel flow over a porous surface. It is supposed, as in the experiment by Beavers and Joseph, that a uniform pressure gradient is maintained in the longitudinal direction in both the channel and the porous medium. After studying the corresponding boundary layers, we obtain rigorously Saffman's modification of the interface condition observed by Beavers and Joseph. It is valid when the pore size of the porous medium tends to zero. Furthermore, the coefficient in the law is determined through an auxiliary boundary-layer type problem.
Beschreibung:Gesehen am 28.08.2018
Beschreibung:Online Resource
ISSN:1095-712X
DOI:10.1137/S003613999833678X