On the effective equations of a viscous incompressible fluid flow through a filter of finite thickness

We consider an incompressible and nonstationary fluid flow, governed by a given pressure drop, in a domain that contains a filter of finite thickness. The filter consists of a big number of tiny, axially symmetric tubes with nonconstant sections. We prove the global existence for the ε‐problem and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jäger, Willi (VerfasserIn) , Mikelić, Andro (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 December 1998
In: Communications on pure and applied mathematics
Year: 1998, Jahrgang: 51, Heft: 9-10, Pages: 1073-1121
ISSN:1097-0312
DOI:10.1002/(SICI)1097-0312(199809/10)51:9/10<1073::AID-CPA6>3.0.CO;2-A
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1002/%28SICI%291097-0312%28199809/10%2951%3A9/10%3C1073%3A%3AAID-CPA6%3E3.0.CO%3B2-A
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0312%28199809/10%2951%3A9/10%3C1073%3A%3AAID-CPA6%3E3.0.CO%3B2-A
Volltext
Verfasserangaben:Willi Jäger and Andro Mikelić
Beschreibung
Zusammenfassung:We consider an incompressible and nonstationary fluid flow, governed by a given pressure drop, in a domain that contains a filter of finite thickness. The filter consists of a big number of tiny, axially symmetric tubes with nonconstant sections. We prove the global existence for the ε‐problem and find out the effective behavior of the velocity and the pressure fields.
Beschreibung:Gesehen am 30.08.2018
Beschreibung:Online Resource
ISSN:1097-0312
DOI:10.1002/(SICI)1097-0312(199809/10)51:9/10<1073::AID-CPA6>3.0.CO;2-A