Systematic comparative study of computational methods for T-cell receptor sequencing data analysis
Abstract. High-throughput sequencing technologies have exposed the possibilities for the in-depth evaluation of T-cell receptor (TCR) repertoires. These studie
Gespeichert in:
| Hauptverfasser: | , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2019
|
| In: |
Briefings in bioinformatics
Year: 2019, Jahrgang: 20, Heft: 1, Pages: 222-234 |
| ISSN: | 1477-4054 |
| DOI: | 10.1093/bib/bbx111 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1093/bib/bbx111 Verlag, Volltext: https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbx111/4210453 |
| Verfasserangaben: | Saira Afzal, Irene Gil-Farina, Richard Gabriel, Shahzad Ahmad, Christof von Kalle, Manfred Schmidt and Raffaele Fronza |
| Zusammenfassung: | Abstract. High-throughput sequencing technologies have exposed the possibilities for the in-depth evaluation of T-cell receptor (TCR) repertoires. These studie |
|---|---|
| Beschreibung: | Published: 23 September 2017 Gesehen am 08.07.2019 |
| Beschreibung: | Online Resource |
| ISSN: | 1477-4054 |
| DOI: | 10.1093/bib/bbx111 |