Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells

Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is essential for understanding the initiation and growth of plant tissues and organs. Although many TFs have been shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis Balaguer, Maria Angels de (Author) , Lohmann, Jan U. (Author)
Format: Article (Journal)
Language:English
Published: 21 August 2017
In: Proceedings of the National Academy of Sciences of the United States of America
Year: 2017, Volume: 114, Issue: 36, Pages: E7632-E7640
ISSN:1091-6490
DOI:10.1073/pnas.1707566114
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1073/pnas.1707566114
Verlag, kostenfrei, Volltext: http://www.pnas.org/content/114/36/E7632
Get full text
Author Notes:Maria Angels de Luis Balaguer, Adam P. Fisher, Natalie M. Clark, Maria Guadalupe Fernandez-Espinosa, Barbara K. Möller, Dolf Weijers, Jan U. Lohmann, Cranos Williams, Oscar Lorenzo, and Rosangela Sozzani

MARC

LEADER 00000caa a2200000 c 4500
001 1580846998
003 DE-627
005 20220815004634.0
007 cr uuu---uuuuu
008 180911s2017 xx |||||o 00| ||eng c
024 7 |a 10.1073/pnas.1707566114  |2 doi 
035 |a (DE-627)1580846998 
035 |a (DE-576)510846998 
035 |a (DE-599)BSZ510846998 
035 |a (OCoLC)1341018254 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Luis Balaguer, Maria Angels de  |e VerfasserIn  |0 (DE-588)1166678091  |0 (DE-627)1030548986  |0 (DE-576)510846920  |4 aut 
245 1 0 |a Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells  |c Maria Angels de Luis Balaguer, Adam P. Fisher, Natalie M. Clark, Maria Guadalupe Fernandez-Espinosa, Barbara K. Möller, Dolf Weijers, Jan U. Lohmann, Cranos Williams, Oscar Lorenzo, and Rosangela Sozzani 
264 1 |c 21 August 2017 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.09.2018 
520 |a Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is essential for understanding the initiation and growth of plant tissues and organs. Although many TFs have been shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the transcriptional signature of the stem cells is lacking. In this work, we used spatial and temporal transcriptomic data to predict interactions among the genes involved in stem cell regulation. To accomplish this, we transcriptionally profiled several stem cell populations and developed a gene regulatory network inference algorithm that combines clustering with dynamic Bayesian network inference. We leveraged the topology of our networks to infer potential major regulators. Specifically, through mathematical modeling and experimental validation, we identified PERIANTHIA (PAN) as an important molecular regulator of quiescent center function. The results presented in this work show that our combination of molecular biology, computational biology, and mathematical modeling is an efficient approach to identify candidate factors that function in the stem cells. 
650 4 |a modeling 
650 4 |a cell-type expression profile 
650 4 |a gene regulatory network 
650 4 |a root development 
650 4 |a root stem cell 
700 1 |a Lohmann, Jan U.  |d 1971-  |e VerfasserIn  |0 (DE-588)121572315  |0 (DE-627)70554642X  |0 (DE-576)292778627  |4 aut 
773 0 8 |i Enthalten in  |a National Academy of Sciences (Washington, DC)  |t Proceedings of the National Academy of Sciences of the United States of America  |d Washington, DC : National Acad. of Sciences, 1915  |g 114(2017), 36, Seite E7632-E7640  |h Online-Ressource  |w (DE-627)254235379  |w (DE-600)1461794-8  |w (DE-576)073260509  |x 1091-6490  |7 nnas 
773 1 8 |g volume:114  |g year:2017  |g number:36  |g pages:E7632-E7640  |g extent:9  |a Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells 
856 4 0 |u http://dx.doi.org/10.1073/pnas.1707566114  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.pnas.org/content/114/36/E7632  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180911 
993 |a Article 
994 |a 2017 
998 |g 121572315  |a Lohmann, Jan U.  |m 121572315:Lohmann, Jan U.  |d 700000  |d 721000  |d 700000  |d 718000  |e 700000PL121572315  |e 721000PL121572315  |e 700000PL121572315  |e 718000PL121572315  |k 0/700000/  |k 1/700000/721000/  |k 0/700000/  |k 1/700000/718000/  |p 8 
999 |a KXP-PPN1580846998  |e 3025248238 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"9 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1091-6490"],"eki":["254235379"],"zdb":["1461794-8"]},"origin":[{"publisher":"National Acad. of Sciences","dateIssuedKey":"1915","dateIssuedDisp":"1915-","publisherPlace":"Washington, DC"}],"recId":"254235379","corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"National Academy of Sciences"}],"language":["eng"],"note":["Gesehen am 09.03.2022"],"disp":"National Academy of Sciences (Washington, DC)Proceedings of the National Academy of Sciences of the United States of America","type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"text":"114(2017), 36, Seite E7632-E7640","volume":"114","extent":"9","year":"2017","issue":"36","pages":"E7632-E7640"},"titleAlt":[{"title":"PNAS online"},{"title":"PNAS"}],"pubHistory":["1.1915 -"],"title":[{"title":"Proceedings of the National Academy of Sciences of the United States of America","title_sort":"Proceedings of the National Academy of Sciences of the United States of America"}]}],"name":{"displayForm":["Maria Angels de Luis Balaguer, Adam P. Fisher, Natalie M. Clark, Maria Guadalupe Fernandez-Espinosa, Barbara K. Möller, Dolf Weijers, Jan U. Lohmann, Cranos Williams, Oscar Lorenzo, and Rosangela Sozzani"]},"origin":[{"dateIssuedDisp":"21 August 2017","dateIssuedKey":"2017"}],"id":{"doi":["10.1073/pnas.1707566114"],"eki":["1580846998"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 11.09.2018"],"language":["eng"],"recId":"1580846998","person":[{"display":"Luis Balaguer, Maria Angels de","roleDisplay":"VerfasserIn","role":"aut","family":"Luis Balaguer","given":"Maria Angels de"},{"given":"Jan U.","family":"Lohmann","role":"aut","display":"Lohmann, Jan U.","roleDisplay":"VerfasserIn"}],"title":[{"title":"Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells","title_sort":"Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells"}]} 
SRT |a LUISBALAGUPREDICTING2120