Automated morphological and morphometric analysis of mass spectrometry imaging data: application to biomarker discovery
Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organ...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
14 September 2017
|
| In: |
Journal of the American Society for Mass Spectrometry
Year: 2017, Jahrgang: 28, Heft: 12, Pages: 2635-2645 |
| ISSN: | 1879-1123 |
| DOI: | 10.1007/s13361-017-1784-y |
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1007/s13361-017-1784-y Verlag, Volltext: http://link.springer.com/10.1007/s13361-017-1784-y |
| Verfasserangaben: | Gaël Picard de Muller, Rima Ait-Belkacem, David Bonnel, Rémi Longuespée, Jonathan Stauber |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1580861350 | ||
| 003 | DE-627 | ||
| 005 | 20220815004956.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180911s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s13361-017-1784-y |2 doi | |
| 035 | |a (DE-627)1580861350 | ||
| 035 | |a (DE-576)510861350 | ||
| 035 | |a (DE-599)BSZ510861350 | ||
| 035 | |a (OCoLC)1341018355 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Picard de Muller, Gaël |e VerfasserIn |0 (DE-588)1166702596 |0 (DE-627)1030569851 |0 (DE-576)510863787 |4 aut | |
| 245 | 1 | 0 | |a Automated morphological and morphometric analysis of mass spectrometry imaging data |b application to biomarker discovery |c Gaël Picard de Muller, Rima Ait-Belkacem, David Bonnel, Rémi Longuespée, Jonathan Stauber |
| 264 | 1 | |c 14 September 2017 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 11.09.2018 | ||
| 520 | |a Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. | ||
| 700 | 1 | |a Longuespée, Rémi |e VerfasserIn |0 (DE-588)113707146X |0 (DE-627)89404690X |0 (DE-576)491093179 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a American Society for Mass Spectrometry |t Journal of the American Society for Mass Spectrometry |d Washington, DC : ACS Publications, 1990 |g 28(2017), 12, Seite 2635-2645 |h Online-Ressource |w (DE-627)320598799 |w (DE-600)2019911-9 |w (DE-576)259485098 |x 1879-1123 |7 nnas |
| 773 | 1 | 8 | |g volume:28 |g year:2017 |g number:12 |g pages:2635-2645 |g extent:11 |a Automated morphological and morphometric analysis of mass spectrometry imaging data application to biomarker discovery |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s13361-017-1784-y |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://link.springer.com/10.1007/s13361-017-1784-y |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180911 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 113707146X |a Longuespée, Rémi |m 113707146X:Longuespée, Rémi |d 910000 |d 912000 |e 910000PL113707146X |e 912000PL113707146X |k 0/910000/ |k 1/910000/912000/ |p 4 | ||
| 999 | |a KXP-PPN1580861350 |e 3025273925 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 11.09.2018"],"recId":"1580861350","language":["eng"],"title":[{"subtitle":"application to biomarker discovery","title":"Automated morphological and morphometric analysis of mass spectrometry imaging data","title_sort":"Automated morphological and morphometric analysis of mass spectrometry imaging data"}],"person":[{"display":"Picard de Muller, Gaël","roleDisplay":"VerfasserIn","role":"aut","family":"Picard de Muller","given":"Gaël"},{"role":"aut","display":"Longuespée, Rémi","roleDisplay":"VerfasserIn","given":"Rémi","family":"Longuespée"}],"physDesc":[{"extent":"11 S."}],"relHost":[{"title":[{"subtitle":"JASMS online","title":"Journal of the American Society for Mass Spectrometry","title_sort":"Journal of the American Society for Mass Spectrometry"}],"corporate":[{"role":"aut","display":"American Society for Mass Spectrometry","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"320598799","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"American Society for Mass SpectrometryJournal of the American Society for Mass Spectrometry","note":["Gesehen am 19.04.2023"],"titleAlt":[{"title":"Mass spectrometry"},{"title":"JASMS online"}],"part":{"year":"2017","pages":"2635-2645","issue":"12","text":"28(2017), 12, Seite 2635-2645","volume":"28","extent":"11"},"pubHistory":["1.1990 -"],"id":{"zdb":["2019911-9"],"eki":["320598799"],"issn":["1879-1123"]},"origin":[{"publisherPlace":"Washington, DC ; Amsterdam ; New York","dateIssuedDisp":"1990-","dateIssuedKey":"1990","publisher":"ACS Publications ; Elsevier Science ; Springer"}],"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"14 September 2017"}],"id":{"eki":["1580861350"],"doi":["10.1007/s13361-017-1784-y"]},"name":{"displayForm":["Gaël Picard de Muller, Rima Ait-Belkacem, David Bonnel, Rémi Longuespée, Jonathan Stauber"]}} | ||
| SRT | |a PICARDDEMUAUTOMATEDM1420 | ||