Automated morphological and morphometric analysis of mass spectrometry imaging data: application to biomarker discovery

Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Picard de Muller, Gaël (VerfasserIn) , Longuespée, Rémi (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 September 2017
In: Journal of the American Society for Mass Spectrometry
Year: 2017, Jahrgang: 28, Heft: 12, Pages: 2635-2645
ISSN:1879-1123
DOI:10.1007/s13361-017-1784-y
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1007/s13361-017-1784-y
Verlag, Volltext: http://link.springer.com/10.1007/s13361-017-1784-y
Volltext
Verfasserangaben:Gaël Picard de Muller, Rima Ait-Belkacem, David Bonnel, Rémi Longuespée, Jonathan Stauber

MARC

LEADER 00000caa a2200000 c 4500
001 1580861350
003 DE-627
005 20220815004956.0
007 cr uuu---uuuuu
008 180911s2017 xx |||||o 00| ||eng c
024 7 |a 10.1007/s13361-017-1784-y  |2 doi 
035 |a (DE-627)1580861350 
035 |a (DE-576)510861350 
035 |a (DE-599)BSZ510861350 
035 |a (OCoLC)1341018355 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Picard de Muller, Gaël  |e VerfasserIn  |0 (DE-588)1166702596  |0 (DE-627)1030569851  |0 (DE-576)510863787  |4 aut 
245 1 0 |a Automated morphological and morphometric analysis of mass spectrometry imaging data  |b application to biomarker discovery  |c Gaël Picard de Muller, Rima Ait-Belkacem, David Bonnel, Rémi Longuespée, Jonathan Stauber 
264 1 |c 14 September 2017 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.09.2018 
520 |a Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. 
700 1 |a Longuespée, Rémi  |e VerfasserIn  |0 (DE-588)113707146X  |0 (DE-627)89404690X  |0 (DE-576)491093179  |4 aut 
773 0 8 |i Enthalten in  |a American Society for Mass Spectrometry  |t Journal of the American Society for Mass Spectrometry  |d Washington, DC : ACS Publications, 1990  |g 28(2017), 12, Seite 2635-2645  |h Online-Ressource  |w (DE-627)320598799  |w (DE-600)2019911-9  |w (DE-576)259485098  |x 1879-1123  |7 nnas 
773 1 8 |g volume:28  |g year:2017  |g number:12  |g pages:2635-2645  |g extent:11  |a Automated morphological and morphometric analysis of mass spectrometry imaging data application to biomarker discovery 
856 4 0 |u http://dx.doi.org/10.1007/s13361-017-1784-y  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://link.springer.com/10.1007/s13361-017-1784-y  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180911 
993 |a Article 
994 |a 2017 
998 |g 113707146X  |a Longuespée, Rémi  |m 113707146X:Longuespée, Rémi  |d 910000  |d 912000  |e 910000PL113707146X  |e 912000PL113707146X  |k 0/910000/  |k 1/910000/912000/  |p 4 
999 |a KXP-PPN1580861350  |e 3025273925 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 11.09.2018"],"recId":"1580861350","language":["eng"],"title":[{"subtitle":"application to biomarker discovery","title":"Automated morphological and morphometric analysis of mass spectrometry imaging data","title_sort":"Automated morphological and morphometric analysis of mass spectrometry imaging data"}],"person":[{"display":"Picard de Muller, Gaël","roleDisplay":"VerfasserIn","role":"aut","family":"Picard de Muller","given":"Gaël"},{"role":"aut","display":"Longuespée, Rémi","roleDisplay":"VerfasserIn","given":"Rémi","family":"Longuespée"}],"physDesc":[{"extent":"11 S."}],"relHost":[{"title":[{"subtitle":"JASMS online","title":"Journal of the American Society for Mass Spectrometry","title_sort":"Journal of the American Society for Mass Spectrometry"}],"corporate":[{"role":"aut","display":"American Society for Mass Spectrometry","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"320598799","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"American Society for Mass SpectrometryJournal of the American Society for Mass Spectrometry","note":["Gesehen am 19.04.2023"],"titleAlt":[{"title":"Mass spectrometry"},{"title":"JASMS online"}],"part":{"year":"2017","pages":"2635-2645","issue":"12","text":"28(2017), 12, Seite 2635-2645","volume":"28","extent":"11"},"pubHistory":["1.1990 -"],"id":{"zdb":["2019911-9"],"eki":["320598799"],"issn":["1879-1123"]},"origin":[{"publisherPlace":"Washington, DC ; Amsterdam ; New York","dateIssuedDisp":"1990-","dateIssuedKey":"1990","publisher":"ACS Publications ; Elsevier Science ; Springer"}],"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"14 September 2017"}],"id":{"eki":["1580861350"],"doi":["10.1007/s13361-017-1784-y"]},"name":{"displayForm":["Gaël Picard de Muller, Rima Ait-Belkacem, David Bonnel, Rémi Longuespée, Jonathan Stauber"]}} 
SRT |a PICARDDEMUAUTOMATEDM1420