NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data

Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vainshtein, Yevhen (VerfasserIn) , Rippe, Karsten (VerfasserIn) , Teif, Vladimir (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 February 2017
In: BMC genomics
Year: 2017, Jahrgang: 18
ISSN:1471-2164
DOI:10.1186/s12864-017-3580-2
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1186/s12864-017-3580-2
Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12864-017-3580-2
Volltext
Verfasserangaben:Yevhen Vainshtein, Karsten Rippe and Vladimir B. Teif
Beschreibung
Zusammenfassung:Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them.
Beschreibung:Gesehen am 12.09.2018
Beschreibung:Online Resource
ISSN:1471-2164
DOI:10.1186/s12864-017-3580-2