Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport

One therapeutic strategy for cystic fibrosis (CF) seeks to restore anion transport to affected epithelia by targeting other apical membrane Cl− channels to bypass dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. The properties and regulation of the Ca2+-acti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Hongyu (VerfasserIn) , Salomon, Johanna J. (VerfasserIn) , Mall, Marcus A. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21th October 2017
In: Current opinion in pharmacology
Year: 2017, Jahrgang: 34, Pages: 91-97
ISSN:1471-4973
DOI:10.1016/j.coph.2017.10.002
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.coph.2017.10.002
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1471489217300085
Volltext
Verfasserangaben:Hongyu Li, Johanna J Salomon, David N Sheppard, Marcus A Mall and Luis JV Galietta
Beschreibung
Zusammenfassung:One therapeutic strategy for cystic fibrosis (CF) seeks to restore anion transport to affected epithelia by targeting other apical membrane Cl− channels to bypass dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. The properties and regulation of the Ca2+-activated Cl− channel TMEM16A argue that long-acting small molecules which target directly TMEM16A are required to overcome CFTR loss. Through genetic studies of lung diseases, SLC26A9, a member of the solute carrier 26 family of anion transporters, has emerged as a promising target to bypass CFTR dysfunction. An alternative strategy to circumvent CFTR dysfunction is to deliver to CF epithelia artificial anion transporters that shuttle Cl− across the apical membrane. Recently, powerful, non-toxic, biologically-active artificial anion transporters have emerged.
Beschreibung:Gesehen am 12.09.2018
Beschreibung:Online Resource
ISSN:1471-4973
DOI:10.1016/j.coph.2017.10.002