Microscopic theory of the refractive index

We examine the refractive index from the viewpoint of modern first-principles materials physics. We first argue that the standard formula, n2=ɛrμr, is generally in conflict with fundamental principles on the microscopic level. Instead, it turns out that an allegedly approximate relation, n2=ɛr, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Starke, Ronald (VerfasserIn) , Schober, Giulio Albert Heinrich (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 March 2017
In: Optik
Year: 2017, Jahrgang: 140, Pages: 62-85
ISSN:1618-1336
DOI:10.1016/j.ijleo.2017.03.088
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.ijleo.2017.03.088
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0030402617303546
Volltext
Verfasserangaben:R. Starke, G.A.H. Schober
Beschreibung
Zusammenfassung:We examine the refractive index from the viewpoint of modern first-principles materials physics. We first argue that the standard formula, n2=ɛrμr, is generally in conflict with fundamental principles on the microscopic level. Instead, it turns out that an allegedly approximate relation, n2=ɛr, which is already being used for most practical purposes, can be justified theoretically at optical wavelengths. More generally, starting from the fundamental, Lorentz-covariant electromagnetic wave equation in materials as used in plasma physics, we rederive a well-known, three-dimensional form of the wave equation in materials and thereby clarify the connection between the covariant fundamental response tensor and the various Cartesian tensors used to describe optical properties. Finally, we prove a general theorem by which the fundamental, covariant wave equation can be reformulated concisely in terms of the microscopic dielectric tensor.
Beschreibung:Gesehen am 14.09.2018
Beschreibung:Online Resource
ISSN:1618-1336
DOI:10.1016/j.ijleo.2017.03.088