Network flow integer programming to track elliptical cells in time-lapse sequences

We propose a novel approach to automatically tracking elliptical cell populations in time-lapse image sequences. Given an initial segmentation, we account for partial occlusions and overlaps by generating an over-complete set of competing detection hypotheses. To this end, we fit ellipses to portion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Türetken, Engin (VerfasserIn) , Haubold, Carsten (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: IEEE transactions on medical imaging
Year: 2016, Jahrgang: 36, Heft: 4, Pages: 942-951
ISSN:1558-254X
DOI:10.1109/TMI.2016.2640859
Online-Zugang:Verlag, Pay-per-use, Volltext: http://dx.doi.org/10.1109/TMI.2016.2640859
Volltext
Verfasserangaben:Engin Türetken, Xinchao Wang, Carlos J. Becker, Carsten Haubold, and Pascal Fua
Beschreibung
Zusammenfassung:We propose a novel approach to automatically tracking elliptical cell populations in time-lapse image sequences. Given an initial segmentation, we account for partial occlusions and overlaps by generating an over-complete set of competing detection hypotheses. To this end, we fit ellipses to portions of the initial regions and build a hierarchy of ellipses, which are then treated as cell candidates. We then select temporally consistent ones by solving to optimality an integer program with only one type of flow variables. This eliminates the need for heuristics to handle missed detections due to partial occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques.
Beschreibung:Article was published on 15 December 2016
Gesehen am 17.09.2018
Beschreibung:Online Resource
ISSN:1558-254X
DOI:10.1109/TMI.2016.2640859