TTCA: an R package for the identification of differentially expressed genes in time course microarray data

Background: The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albrecht, Marco (VerfasserIn) , Stichel, Damian (VerfasserIn) , Müller, Benedikt (VerfasserIn) , Sticht, Carsten (VerfasserIn) , Gretz, Norbert (VerfasserIn) , Klingmüller, Ursula (VerfasserIn) , Breuhahn, Kai (VerfasserIn) , Matthäus, Franziska (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 January 2017
In: BMC bioinformatics
Year: 2017, Jahrgang: 18
ISSN:1471-2105
DOI:10.1186/s12859-016-1440-8
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1186/s12859-016-1440-8
Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12859-016-1440-8
Volltext
Verfasserangaben:Marco Albrecht, Damian Stichel, Benedikt Müller, Ruth Merkle, Carsten Sticht, Norbert Gretz, Ursula Klingmüller, Kai Breuhahn and Franziska Matthäus

MARC

LEADER 00000caa a2200000 c 4500
001 158105727X
003 DE-627
005 20220815012749.0
007 cr uuu---uuuuu
008 180918s2017 xx |||||o 00| ||eng c
024 7 |a 10.1186/s12859-016-1440-8  |2 doi 
035 |a (DE-627)158105727X 
035 |a (DE-576)51105727X 
035 |a (DE-599)BSZ51105727X 
035 |a (OCoLC)1341018456 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Albrecht, Marco  |e VerfasserIn  |0 (DE-588)1124417109  |0 (DE-627)878097864  |0 (DE-576)482504471  |4 aut 
245 1 0 |a TTCA  |b an R package for the identification of differentially expressed genes in time course microarray data  |c Marco Albrecht, Damian Stichel, Benedikt Müller, Ruth Merkle, Carsten Sticht, Norbert Gretz, Ursula Klingmüller, Kai Breuhahn and Franziska Matthäus 
264 1 |c 14 January 2017 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.09.2018 
520 |a Background: The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements. Results: The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF). Conclusion: Here we describe a new, efficient method for the analysis of sparse and heterogeneous time course data with high detection sensitivity and transparency. It is implemented as R package TTCA (transcript time course analysis) and can be installed from the Comprehensive R Archive Network, CRAN. The source code is provided with the Additional file 1. 
700 1 |a Stichel, Damian  |e VerfasserIn  |0 (DE-588)1078124507  |0 (DE-627)838010059  |0 (DE-576)359423566  |4 aut 
700 1 |a Müller, Benedikt  |e VerfasserIn  |0 (DE-588)1075739713  |0 (DE-627)833656244  |0 (DE-576)44460684X  |4 aut 
700 1 |a Sticht, Carsten  |d 1972-  |e VerfasserIn  |0 (DE-588)1020115718  |0 (DE-627)691110077  |0 (DE-576)250042177  |4 aut 
700 1 |a Gretz, Norbert  |d 1954-2023  |e VerfasserIn  |0 (DE-588)1020104589  |0 (DE-627)691105154  |0 (DE-576)359544843  |4 aut 
700 1 |a Klingmüller, Ursula  |d 1964-  |e VerfasserIn  |0 (DE-588)1098573455  |0 (DE-627)857742876  |0 (DE-576)46917014X  |4 aut 
700 1 |a Breuhahn, Kai  |d 1969-  |e VerfasserIn  |0 (DE-588)122803329  |0 (DE-627)082164959  |0 (DE-576)293427364  |4 aut 
700 1 |a Matthäus, Franziska  |d 1975-  |e VerfasserIn  |0 (DE-588)1053291493  |0 (DE-627)789749823  |0 (DE-576)409030031  |4 aut 
773 0 8 |i Enthalten in  |t BMC bioinformatics  |d London : BioMed Central, 2000  |g 18(2017) Artikel-Nummer 33, 11 Seiten  |h Online-Ressource  |w (DE-627)326644814  |w (DE-600)2041484-5  |w (DE-576)107014688  |x 1471-2105  |7 nnas  |a TTCA an R package for the identification of differentially expressed genes in time course microarray data 
773 1 8 |g volume:18  |g year:2017  |g extent:11  |a TTCA an R package for the identification of differentially expressed genes in time course microarray data 
856 4 0 |u http://dx.doi.org/10.1186/s12859-016-1440-8  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1186/s12859-016-1440-8  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180918 
993 |a Article 
994 |a 2017 
998 |g 1053291493  |a Matthäus, Franziska  |m 1053291493:Matthäus, Franziska  |p 9  |y j 
998 |g 122803329  |a Breuhahn, Kai  |m 122803329:Breuhahn, Kai  |d 910000  |d 912000  |e 910000PB122803329  |e 912000PB122803329  |k 0/910000/  |k 1/910000/912000/  |p 8 
998 |g 1098573455  |a Klingmüller, Ursula  |m 1098573455:Klingmüller, Ursula  |d 140000  |e 140000PK1098573455  |k 0/140000/  |p 7 
998 |g 1020104589  |a Gretz, Norbert  |m 1020104589:Gretz, Norbert  |d 60000  |d 999811  |e 60000PG1020104589  |e 999811PG1020104589  |k 0/60000/  |k 1/60000/999811/  |p 6 
998 |g 1020115718  |a Sticht, Carsten  |m 1020115718:Sticht, Carsten  |d 60000  |d 999811  |e 60000PS1020115718  |e 999811PS1020115718  |k 0/60000/  |k 1/60000/999811/  |p 5 
998 |g 1075739713  |a Müller, Benedikt  |m 1075739713:Müller, Benedikt  |d 910000  |d 912000  |e 910000PM1075739713  |e 912000PM1075739713  |k 0/910000/  |k 1/910000/912000/  |p 3 
998 |g 1078124507  |a Stichel, Damian  |m 1078124507:Stichel, Damian  |d 700000  |d 716000  |e 700000PS1078124507  |e 716000PS1078124507  |k 0/700000/  |k 1/700000/716000/  |p 2 
998 |g 1124417109  |a Albrecht, Marco  |m 1124417109:Albrecht, Marco  |d 700000  |d 708000  |e 700000PA1124417109  |e 708000PA1124417109  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN158105727X  |e 3025766344 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"id":{"eki":["326644814"],"zdb":["2041484-5"],"issn":["1471-2105"]},"origin":[{"publisher":"BioMed Central ; Springer","publisherPlace":"London ; Berlin ; Heidelberg","dateIssuedKey":"2000","dateIssuedDisp":"2000-"}],"note":["Gesehen am 22.05.20"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"BMC bioinformatics","title":"BMC bioinformatics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"326644814","disp":"TTCA an R package for the identification of differentially expressed genes in time course microarray dataBMC bioinformatics","part":{"text":"18(2017) Artikel-Nummer 33, 11 Seiten","year":"2017","extent":"11","volume":"18"},"pubHistory":["1.2000 -"]}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"given":"Marco","family":"Albrecht","display":"Albrecht, Marco","role":"aut"},{"given":"Damian","role":"aut","display":"Stichel, Damian","family":"Stichel"},{"given":"Benedikt","role":"aut","display":"Müller, Benedikt","family":"Müller"},{"role":"aut","family":"Sticht","display":"Sticht, Carsten","given":"Carsten"},{"family":"Gretz","display":"Gretz, Norbert","role":"aut","given":"Norbert"},{"given":"Ursula","role":"aut","display":"Klingmüller, Ursula","family":"Klingmüller"},{"given":"Kai","role":"aut","family":"Breuhahn","display":"Breuhahn, Kai"},{"given":"Franziska","role":"aut","display":"Matthäus, Franziska","family":"Matthäus"}],"recId":"158105727X","id":{"doi":["10.1186/s12859-016-1440-8"],"eki":["158105727X"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"14 January 2017"}],"name":{"displayForm":["Marco Albrecht, Damian Stichel, Benedikt Müller, Ruth Merkle, Carsten Sticht, Norbert Gretz, Ursula Klingmüller, Kai Breuhahn and Franziska Matthäus"]},"note":["Gesehen am 18.09.2018"],"title":[{"title_sort":"TTCA","title":"TTCA","subtitle":"an R package for the identification of differentially expressed genes in time course microarray data"}],"physDesc":[{"extent":"11 S."}],"language":["eng"]} 
SRT |a ALBRECHTMATTCA1420