How can we define and analyse drug exposure more precisely to improve the prediction of hospitalizations in longitudinal (claims) data?

Background: Risk prediction models can be powerful tools to support clinical decision-making, to help targeting interventions, and, thus, to improve clinical and economic outcomes, provided that model performance is good and sensitivity and specificity are well balanced. Drug utilization as a potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meid, Andreas (VerfasserIn) , Haefeli, Walter E. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: European journal of clinical pharmacology
Year: 2016, Jahrgang: 73, Heft: 3, Pages: 373-380
ISSN:1432-1041
DOI:10.1007/s00228-016-2184-0
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00228-016-2184-0
Verlag, Volltext: https://doi.org/10.1007/s00228-016-2184-0
Volltext
Verfasserangaben:Andreas D. Meid, Andreas Groll, Ulrich Schieborr, Jochen Walker, Walter E. Haefeli

MARC

LEADER 00000caa a2200000 c 4500
001 1581224974
003 DE-627
005 20220815015313.0
007 cr uuu---uuuuu
008 180924r20172016xx |||||o 00| ||eng c
024 7 |a 10.1007/s00228-016-2184-0  |2 doi 
035 |a (DE-627)1581224974 
035 |a (DE-576)511224974 
035 |a (DE-599)BSZ511224974 
035 |a (OCoLC)1341019160 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Meid, Andreas  |d 1981-  |e VerfasserIn  |0 (DE-588)1076301991  |0 (DE-627)834660377  |0 (DE-576)445184582  |4 aut 
245 1 0 |a How can we define and analyse drug exposure more precisely to improve the prediction of hospitalizations in longitudinal (claims) data?  |c Andreas D. Meid, Andreas Groll, Ulrich Schieborr, Jochen Walker, Walter E. Haefeli 
264 1 |c 2017 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First online: 24 December 2016 
500 |a Gesehen am 24.09.2018 
520 |a Background: Risk prediction models can be powerful tools to support clinical decision-making, to help targeting interventions, and, thus, to improve clinical and economic outcomes, provided that model performance is good and sensitivity and specificity are well balanced. Drug utilization as a potential risk factor for unplanned hospitalizations has recently emerged as a meaningful predictor variable in such models. Drug treatment is a rather unstable (i.e. time-dependent) phenomenon and most drug-induced events are concentration-dependent and therefore individual drug exposure will likely modulate the risk. This especially applies to longitudinal monitoring of appropriate drug treatment within claims data as another promising application for prediction models.Methods and ResultsTo guide future research towards this direction, we firstly reviewed current risk prediction models for unplanned hospitalizations that explicitly included information on drug utilization and were surprised to find that these models rarely attempted to consider dose and frequent modulators of drug clearance such as interactions with co-medication or co-morbidities. As another example, they often presumed class effects where in fact, differences between active moieties were well established. In addition, the study designs and statistical risk analysis disregarded the fact that medication and risk modulators and, thus, adverse events can vary over time. In a simulation study, we therefore evaluated the potential benefit of time-dependent Cox models over standard binary regression approaches with a fixed follow-up period.ConclusionsLongitudinal drug information could be utilized much more efficiently both by precisely estimating individual drug exposure and by applying more refined statistical methodology to account for time-dependent drug utilization patterns. 
534 |c 2016 
650 4 |a Drug utilization 
650 4 |a Hospital admission 
650 4 |a Hospitalization 
650 4 |a Inappropriate prescribing 
650 4 |a Meta-analysis 
650 4 |a Risk prediction model 
700 1 |a Haefeli, Walter E.  |d 1958-  |e VerfasserIn  |0 (DE-588)124572359  |0 (DE-627)656806141  |0 (DE-576)340514221  |4 aut 
773 0 8 |i Enthalten in  |t European journal of clinical pharmacology  |d Berlin : Springer, 1968  |g 73(2017), 3, Seite 373-380  |h Online-Ressource  |w (DE-627)253722829  |w (DE-600)1459058-X  |w (DE-576)072372613  |x 1432-1041  |7 nnas  |a How can we define and analyse drug exposure more precisely to improve the prediction of hospitalizations in longitudinal (claims) data? 
773 1 8 |g volume:73  |g year:2017  |g number:3  |g pages:373-380  |g extent:8  |a How can we define and analyse drug exposure more precisely to improve the prediction of hospitalizations in longitudinal (claims) data? 
856 4 0 |u http://dx.doi.org/10.1007/s00228-016-2184-0  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://doi.org/10.1007/s00228-016-2184-0  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180924 
993 |a Article 
994 |a 2017 
998 |g 124572359  |a Haefeli, Walter E.  |m 124572359:Haefeli, Walter E.  |d 910000  |d 910100  |e 910000PH124572359  |e 910100PH124572359  |k 0/910000/  |k 1/910000/910100/  |p 5  |y j 
998 |g 1076301991  |a Meid, Andreas  |m 1076301991:Meid, Andreas  |d 910000  |d 910100  |e 910000PM1076301991  |e 910100PM1076301991  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1581224974  |e 3026401102 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["First online: 24 December 2016","Gesehen am 24.09.2018"],"recId":"1581224974","name":{"displayForm":["Andreas D. Meid, Andreas Groll, Ulrich Schieborr, Jochen Walker, Walter E. Haefeli"]},"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"id":{"eki":["1581224974"],"doi":["10.1007/s00228-016-2184-0"]},"physDesc":[{"extent":"8 S."}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.1968/69 -"],"part":{"text":"73(2017), 3, Seite 373-380","year":"2017","extent":"8","pages":"373-380","volume":"73","issue":"3"},"recId":"253722829","note":["Gesehen am 11.10.05"],"id":{"issn":["1432-1041"],"zdb":["1459058-X"],"eki":["253722829"]},"titleAlt":[{"title":"Clinical pharmacology"},{"title":"EJCP"},{"title":"Pharmacologia clinica"}],"language":["eng"],"disp":"How can we define and analyse drug exposure more precisely to improve the prediction of hospitalizations in longitudinal (claims) data?European journal of clinical pharmacology","origin":[{"dateIssuedKey":"1968","publisherPlace":"Berlin ; Heidelberg ; New York","publisher":"Springer","dateIssuedDisp":"1968-"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["organ of European Association for Clinical Pharmacology and Therapeutics (EACPT)"]},"title":[{"title_sort":"European journal of clinical pharmacology","title":"European journal of clinical pharmacology"}]}],"person":[{"family":"Meid","display":"Meid, Andreas","given":"Andreas","role":"aut","roleDisplay":"VerfasserIn"},{"display":"Haefeli, Walter E.","roleDisplay":"VerfasserIn","role":"aut","given":"Walter E.","family":"Haefeli"}],"language":["eng"],"title":[{"title_sort":"How can we define and analyse drug exposure more precisely to improve the prediction of hospitalizations in longitudinal (claims) data?","title":"How can we define and analyse drug exposure more precisely to improve the prediction of hospitalizations in longitudinal (claims) data?"}]} 
SRT |a MEIDANDREAHOWCANWEDE2017