Towards a systematic convergence of Multi-Layer (ML) multi-configuration time-dependent hartree nuclear wavefunctions: the ML-spawning algorithm

The Multi-Layer (ML) variant of the Multi-Configuration Time-Dependent Hartree (MCTDH) method is a powerful tool for the efficient computation of nuclear quantum dynamics in high-dimensional systems. By providing an optimal choice of layered effective degrees of freedom in form of the so-called ML t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mendive-Tapia, David (VerfasserIn) , Meyer, Hans-Dieter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 January 2017
In: Chemical physics
Year: 2017, Jahrgang: 482, Pages: 113-123
DOI:10.1016/j.chemphys.2016.08.031
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.chemphys.2016.08.031
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0301010416305134
Volltext
Verfasserangaben:David Mendive-Tapia, Thiago Firmino, Hans-Dieter Meyer, Fabien Gatti
Beschreibung
Zusammenfassung:The Multi-Layer (ML) variant of the Multi-Configuration Time-Dependent Hartree (MCTDH) method is a powerful tool for the efficient computation of nuclear quantum dynamics in high-dimensional systems. By providing an optimal choice of layered effective degrees of freedom in form of the so-called ML tree, one is able to reduce the computational cost to an amenable number of configurations. Nevertheless, the fact that one must also make a series of ad hoc decisions often based on intuition or experience at the outset — such as the number of configurations per node and the branching of the ML tree — directly affect the efficiency of the computation and make its use less straightforward than the standard MCTDH method. Therefore, herein we detail a new algorithm for adaptively expanding the size of every node on-the-fly (i.e. spawning) and a derived criterion for the selection of an efficient tree’s branching.
Beschreibung:Gesehen am 26.09.2018
Beschreibung:Online Resource
DOI:10.1016/j.chemphys.2016.08.031