Energy-efficient multigrid smoothers and grid transfer operators on multi-core and GPU clusters

We investigate time and energy to solution for the CPU- and GPU-based execution of the compute intensive smoother and grid transfer operators in a geometric multigrid linear solver. We use a hybrid parallel implementation for both shared and distributed memory multi-core host systems comprising CUDA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wlotzka, Martin (VerfasserIn) , Heuveline, Vincent (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Journal of parallel and distributed computing
Year: 2016, Jahrgang: 100, Pages: 181-192
DOI:10.1016/j.jpdc.2016.05.006
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.jpdc.2016.05.006
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0743731516300363
Volltext
Verfasserangaben:Martin Wlotzka, Vincent Heuveline

MARC

LEADER 00000caa a2200000 c 4500
001 1581442211
003 DE-627
005 20220815022625.0
007 cr uuu---uuuuu
008 181001r20172016xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jpdc.2016.05.006  |2 doi 
035 |a (DE-627)1581442211 
035 |a (DE-576)511442211 
035 |a (DE-599)BSZ511442211 
035 |a (OCoLC)1341019456 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Wlotzka, Martin  |e VerfasserIn  |0 (DE-588)1031120645  |0 (DE-627)735676135  |0 (DE-576)378546856  |4 aut 
245 1 0 |a Energy-efficient multigrid smoothers and grid transfer operators on multi-core and GPU clusters  |c Martin Wlotzka, Vincent Heuveline 
264 1 |c 2017 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.10.2018 
520 |a We investigate time and energy to solution for the CPU- and GPU-based execution of the compute intensive smoother and grid transfer operators in a geometric multigrid linear solver. We use a hybrid parallel implementation for both shared and distributed memory multi-core host systems comprising CUDA-capable devices. Our numerical experiments are designed to assess the effect of combining an MPI-parallel multigrid framework with OpenMP host threads or CUDA accelerators instead of MPI-only CPU computations for various parallel setups. We present runtime and energy measurements from a quad-CPU test system equipped with two GPUs. We find that using an accelerated asynchronous smoother can yield substantial savings of time and energy to solution over using a host-only Jacobi smoother in small and medium sized host systems with one or two multi-core CPUs. The acceleration of the grid transfer operators also yields a benefit, yet smaller than the benefit from the smoother. For large host systems a hybrid MPI-OpenMP parallelization turns out to be most beneficial with respect to energy consumption, although it is not the fastest option. 
534 |c 2016 
650 4 |a Energy-aware numerics 
650 4 |a Geometric multigrid 
650 4 |a Heterogeneous platforms 
650 4 |a Hybrid parallelization 
650 4 |a Performance and energy assessment 
700 1 |a Heuveline, Vincent  |d 1968-  |e VerfasserIn  |0 (DE-588)1046579266  |0 (DE-627)776691880  |0 (DE-576)399904727  |4 aut 
773 0 8 |i Enthalten in  |t Journal of parallel and distributed computing  |d Amsterdam [u.a.] : Elsevier, 1984  |g 100(2017), Seite 181-192  |h Online-Ressource  |w (DE-627)267328222  |w (DE-600)1469781-6  |w (DE-576)104193921  |7 nnas  |a Energy-efficient multigrid smoothers and grid transfer operators on multi-core and GPU clusters 
773 1 8 |g volume:100  |g year:2017  |g pages:181-192  |g extent:12  |a Energy-efficient multigrid smoothers and grid transfer operators on multi-core and GPU clusters 
856 4 0 |u http://dx.doi.org/10.1016/j.jpdc.2016.05.006  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0743731516300363  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20181001 
993 |a Article 
994 |a 2017 
998 |g 1046579266  |a Heuveline, Vincent  |m 1046579266:Heuveline, Vincent  |d 700000  |d 704000  |e 700000PH1046579266  |e 704000PH1046579266  |k 0/700000/  |k 1/700000/704000/  |p 2  |y j 
998 |g 1031120645  |a Wlotzka, Martin  |m 1031120645:Wlotzka, Martin  |d 700000  |d 704000  |e 700000PW1031120645  |e 704000PW1031120645  |k 0/700000/  |k 1/700000/704000/  |p 1  |x j 
999 |a KXP-PPN1581442211  |e 3027469983 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 14.08.2020"],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.]","dateIssuedDisp":"1984-","dateIssuedKey":"1984","publisher":"Elsevier ; Academic Press"}],"id":{"zdb":["1469781-6"],"eki":["267328222"]},"recId":"267328222","disp":"Energy-efficient multigrid smoothers and grid transfer operators on multi-core and GPU clustersJournal of parallel and distributed computing","title":[{"title":"Journal of parallel and distributed computing","title_sort":"Journal of parallel and distributed computing"}],"part":{"year":"2017","extent":"12","pages":"181-192","text":"100(2017), Seite 181-192","volume":"100"},"pubHistory":["1.1984 - 74.2014; Vol. 75.2015 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"]}],"id":{"doi":["10.1016/j.jpdc.2016.05.006"],"eki":["1581442211"]},"physDesc":[{"extent":"12 S."}],"person":[{"roleDisplay":"VerfasserIn","family":"Wlotzka","given":"Martin","role":"aut","display":"Wlotzka, Martin"},{"roleDisplay":"VerfasserIn","family":"Heuveline","given":"Vincent","display":"Heuveline, Vincent","role":"aut"}],"note":["Gesehen am 01.10.2018"],"name":{"displayForm":["Martin Wlotzka, Vincent Heuveline"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1581442211","title":[{"title_sort":"Energy-efficient multigrid smoothers and grid transfer operators on multi-core and GPU clusters","title":"Energy-efficient multigrid smoothers and grid transfer operators on multi-core and GPU clusters"}]} 
SRT |a WLOTZKAMARENERGYEFFI2017