Least-squares spectral element preconditioners for fourth order elliptic problems

In this paper, we propose preconditioners for the system of linear equations that arise from a discretization of fourth order elliptic problems in two and three dimensions (d=2,3) using spectral element methods. These preconditioners are constructed using separation of variables and can be diagonali...

Full description

Saved in:
Bibliographic Details
Main Authors: Husain, Akhlaq (Author) , Khan, Arbaz (Author)
Format: Article (Journal)
Language:English
Published: 1 August 2017
In: Computers and mathematics with applications
Year: 2017, Volume: 74, Issue: 3, Pages: 482-503
ISSN:1873-7668
DOI:10.1016/j.camwa.2017.04.032
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.camwa.2017.04.032
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0898122117302638
Get full text
Author Notes:Akhlaq Husain, Arbaz Khan

MARC

LEADER 00000caa a2200000 c 4500
001 1581692005
003 DE-627
005 20220815025321.0
007 cr uuu---uuuuu
008 181009s2017 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.camwa.2017.04.032  |2 doi 
035 |a (DE-627)1581692005 
035 |a (DE-576)511692005 
035 |a (DE-599)BSZ511692005 
035 |a (OCoLC)1341019809 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Husain, Akhlaq  |e VerfasserIn  |0 (DE-588)1164611356  |0 (DE-627)1028982119  |0 (DE-576)510095216  |4 aut 
245 1 0 |a Least-squares spectral element preconditioners for fourth order elliptic problems  |c Akhlaq Husain, Arbaz Khan 
264 1 |c 1 August 2017 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online: 25 May 2017 
500 |a Gesehen am 09.10.2018 
520 |a In this paper, we propose preconditioners for the system of linear equations that arise from a discretization of fourth order elliptic problems in two and three dimensions (d=2,3) using spectral element methods. These preconditioners are constructed using separation of variables and can be diagonalized and hence easy to invert. For second order elliptic problems this technique has proven to be successful and performs better than other preconditioners in the framework of least-squares methods. We show that these preconditioners are spectrally equivalent to the quadratic forms by which we approximate them. Numerical results for the condition number reflects the effectiveness of the preconditioners. 
650 4 |a Condition number 
650 4 |a Fourth order problems 
650 4 |a Preconditioners 
650 4 |a Separation of variables 
650 4 |a Spectral element method 
650 4 |a Spectral equivalence 
700 1 |a Khan, Arbaz  |e VerfasserIn  |0 (DE-588)1164608665  |0 (DE-627)1028980418  |0 (DE-576)510093647  |4 aut 
773 0 8 |i Enthalten in  |t Computers and mathematics with applications  |d Amsterdam [u.a.] : Elsevier Science, 1975  |g 74(2017), 3, Seite 482-503  |h Online-Ressource  |w (DE-627)320435121  |w (DE-600)2004251-6  |w (DE-576)259271225  |x 1873-7668  |7 nnas  |a Least-squares spectral element preconditioners for fourth order elliptic problems 
773 1 8 |g volume:74  |g year:2017  |g number:3  |g pages:482-503  |g extent:22  |a Least-squares spectral element preconditioners for fourth order elliptic problems 
856 4 0 |u http://dx.doi.org/10.1016/j.camwa.2017.04.032  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0898122117302638  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20181009 
993 |a Article 
994 |a 2017 
998 |g 1164608665  |a Khan, Arbaz  |m 1164608665:Khan, Arbaz  |d 700000  |d 708000  |e 700000PK1164608665  |e 708000PK1164608665  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
999 |a KXP-PPN1581692005  |e 3028256495 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Akhlaq Husain, Arbaz Khan"]},"origin":[{"dateIssuedDisp":"1 August 2017","dateIssuedKey":"2017"}],"id":{"eki":["1581692005"],"doi":["10.1016/j.camwa.2017.04.032"]},"physDesc":[{"extent":"22 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1975","dateIssuedDisp":"1975-"}],"id":{"issn":["1873-7668"],"zdb":["2004251-6"],"eki":["320435121"]},"pubHistory":["1.1975 -"],"part":{"year":"2017","issue":"3","pages":"482-503","volume":"74","text":"74(2017), 3, Seite 482-503","extent":"22"},"note":["Gesehen am 28.08.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Least-squares spectral element preconditioners for fourth order elliptic problemsComputers and mathematics with applications","recId":"320435121","language":["eng"],"title":[{"subtitle":"an international journal","title":"Computers and mathematics with applications","title_sort":"Computers and mathematics with applications"}]}],"person":[{"given":"Akhlaq","family":"Husain","role":"aut","roleDisplay":"VerfasserIn","display":"Husain, Akhlaq"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Khan, Arbaz","given":"Arbaz","family":"Khan"}],"title":[{"title_sort":"Least-squares spectral element preconditioners for fourth order elliptic problems","title":"Least-squares spectral element preconditioners for fourth order elliptic problems"}],"note":["Available online: 25 May 2017","Gesehen am 09.10.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1581692005","language":["eng"]} 
SRT |a HUSAINAKHLLEASTSQUAR1201