Highly interactive kink solutions

In this work we present a new class of real scalar field models admitting strongly interactive kink solutions. Instead of the usual exponential asymptotic behavior these topological solutions exhibit a power-law one. We investigate the interaction force between a pair of kink/antikink solutions both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gomes, Adalto R. (VerfasserIn) , Menezes, Romualdo R. (VerfasserIn) , Oliveira, Joana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 July 2012
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 2012, Jahrgang: 86, Heft: 2
ISSN:1550-2368
DOI:10.1103/PhysRevD.86.025008
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevD.86.025008
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.86.025008
Volltext
Verfasserangaben:A.R. Gomes, R. Menezes and J.C.R.E. Oliveira
Beschreibung
Zusammenfassung:In this work we present a new class of real scalar field models admitting strongly interactive kink solutions. Instead of the usual exponential asymptotic behavior these topological solutions exhibit a power-law one. We investigate the interaction force between a pair of kink/antikink solutions both analytically and numerically, by integrating the time dependent field equations of the model. Furthermore, working within the first-order framework, we analyze the linear stability of these solutions. The stability analysis leads to Schödinger-like equations with potentials which, despite admitting no bound states, lead to strong resonance peaks. We argue that these properties are important for some possible physical applications.
Beschreibung:Gesehen am 05.12.2018
Beschreibung:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.86.025008