Light propagation in linearly perturbed ΛLTB models

We apply a generic formalism of light propagation to linearly perturbed spherically symmetric dust models including a cosmological constant. For a comoving observer on the central worldline, we derive the equation of geodesic deviation and perform a suitable spherical harmonic decomposition. This al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meyer, Sven (VerfasserIn) , Bartelmann, Matthias (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 November 2017
In: Journal of cosmology and astroparticle physics
Year: 2017, Heft: 11
ISSN:1475-7516
DOI:10.1088/1475-7516/2017/11/037
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1088/1475-7516/2017/11/037
Verlag, Volltext: http://stacks.iop.org/1475-7516/2017/i=11/a=037
Volltext
Verfasserangaben:Sven Meyer, Matthias Bartelmann
Beschreibung
Zusammenfassung:We apply a generic formalism of light propagation to linearly perturbed spherically symmetric dust models including a cosmological constant. For a comoving observer on the central worldline, we derive the equation of geodesic deviation and perform a suitable spherical harmonic decomposition. This allows to map the abstract gauge-invariant perturbation variables to well-known quantities from weak gravitational lensing like convergence or cosmic shear. The resulting set of differential equations can effectively be solved by a Green's function approach leading to line-of-sight integrals sourced by the perturbation variables on the backward lightcone. The resulting spherical harmonic coefficients of the lensing observables are presented and the shear field is decomposed into its E- and B-modes. Results of this work are an essential tool to add information from linear structure formation to the analysis of spherically symmetric dust models with the purpose of testing the Copernican Principle with multiple cosmological probes.
Beschreibung:Gesehen am 30.10.2018
Beschreibung:Online Resource
ISSN:1475-7516
DOI:10.1088/1475-7516/2017/11/037