Esophagus segmentation in CT via 3D fully convolutional neural network and random walk

PURPOSE: Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fechter, Tobias (VerfasserIn) , Adebahr, Sonja (VerfasserIn) , Baltas, Dimos (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2017
In: Medical physics
Year: 2017, Jahrgang: 44, Heft: 12, Pages: 6341-6352
ISSN:2473-4209
DOI:10.1002/mp.12593
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1002/mp.12593
Volltext
Verfasserangaben:Tobias Fechter, Sonja Adebahr, Dimos Baltas, Ismail Ben Ayed, Christian Desrosiers, Jose Dolz

MARC

LEADER 00000caa a2200000 c 4500
001 1583668896
003 DE-627
005 20230427193405.0
007 cr uuu---uuuuu
008 181113s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.12593  |2 doi 
035 |a (DE-627)1583668896 
035 |a (DE-576)513668896 
035 |a (DE-599)BSZ513668896 
035 |a (OCoLC)1341023481 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Fechter, Tobias  |e VerfasserIn  |0 (DE-588)1123819696  |0 (DE-627)877453349  |0 (DE-576)482140569  |4 aut 
245 1 0 |a Esophagus segmentation in CT via 3D fully convolutional neural network and random walk  |c Tobias Fechter, Sonja Adebahr, Dimos Baltas, Ismail Ben Ayed, Christian Desrosiers, Jose Dolz 
264 1 |c December 2017 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.11.2018 
520 |a PURPOSE: Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. METHODS: First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. RESULTS: The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. CONCLUSION: We show that a CNN can yield accurate estimations of esophagus location, and that the results of this model can be refined by a random walk step taking pixel intensities and neighborhood relationships into account. One of the main advantages of our network over previous methods is that it performs 3D convolutions, thus fully exploiting the 3D spatial context and performing an efficient volume-wise prediction. The whole segmentation process is fully automatic and yields esophagus delineations in very good agreement with the gold standard, showing that it can compete with previously published methods. 
650 4 |a convolutional neural network 
650 4 |a CT 
650 4 |a esophagus 
650 4 |a Esophagus 
650 4 |a image processing 
650 4 |a Imaging, Three-Dimensional 
650 4 |a Machine Learning 
650 4 |a Neural Networks (Computer) 
650 4 |a segmentation 
650 4 |a Tomography, X-Ray Computed 
700 1 |a Adebahr, Sonja  |d 1977-  |e VerfasserIn  |0 (DE-588)138136521  |0 (DE-627)599889829  |0 (DE-576)306422379  |4 aut 
700 1 |a Baltas, Dimos  |d 1961-  |e VerfasserIn  |0 (DE-588)116440153X  |0 (DE-627)102884977X  |0 (DE-576)508513847  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 44(2017), 12, Seite 6341-6352  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Esophagus segmentation in CT via 3D fully convolutional neural network and random walk 
773 1 8 |g volume:44  |g year:2017  |g number:12  |g pages:6341-6352  |g extent:12  |a Esophagus segmentation in CT via 3D fully convolutional neural network and random walk 
856 4 0 |u http://dx.doi.org/10.1002/mp.12593  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20181113 
993 |a Article 
994 |a 2017 
998 |g 116440153X  |a Baltas, Dimos  |m 116440153X:Baltas, Dimos  |p 3 
998 |g 138136521  |a Adebahr, Sonja  |m 138136521:Adebahr, Sonja  |p 2 
998 |g 1123819696  |a Fechter, Tobias  |m 1123819696:Fechter, Tobias  |p 1  |x j 
999 |a KXP-PPN1583668896  |e 3032128242 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1583668896"],"doi":["10.1002/mp.12593"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"December 2017"}],"name":{"displayForm":["Tobias Fechter, Sonja Adebahr, Dimos Baltas, Ismail Ben Ayed, Christian Desrosiers, Jose Dolz"]},"relHost":[{"recId":"265784867","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Esophagus segmentation in CT via 3D fully convolutional neural network and random walkMedical physics","note":["Gesehen am 01.08.2025"],"titleAlt":[{"title":"Medical physics online"}],"part":{"extent":"12","volume":"44","text":"44(2017), 12, Seite 6341-6352","pages":"6341-6352","issue":"12","year":"2017"},"pubHistory":["1.1974 -"],"title":[{"title":"Medical physics","title_sort":"Medical physics"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"id":{"eki":["265784867"],"zdb":["1466421-5"],"issn":["2473-4209","1522-8541"]},"origin":[{"publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedKey":"1974","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedDisp":"1974-"}]}],"physDesc":[{"extent":"12 S."}],"title":[{"title_sort":"Esophagus segmentation in CT via 3D fully convolutional neural network and random walk","title":"Esophagus segmentation in CT via 3D fully convolutional neural network and random walk"}],"person":[{"role":"aut","display":"Fechter, Tobias","roleDisplay":"VerfasserIn","given":"Tobias","family":"Fechter"},{"given":"Sonja","family":"Adebahr","role":"aut","roleDisplay":"VerfasserIn","display":"Adebahr, Sonja"},{"roleDisplay":"VerfasserIn","display":"Baltas, Dimos","role":"aut","family":"Baltas","given":"Dimos"}],"language":["eng"],"recId":"1583668896","note":["Gesehen am 13.11.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a FECHTERTOBESOPHAGUSS2017