Projection-wise filter optimization for limited-angle cone-beam CT using the approximate inverse

In this paper, we present a novel and efficient approach for the optimization of filters for limited-angle cone beam computed tomography (CBCT). Our method is based on the theory of approximate inverse (AI) and uses a simultaneous iterative reconstruction technique (SIRT) to estimate a view-dependen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Muders, Jens (VerfasserIn) , Hesser, Jürgen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2015
In: IEEE transactions on nuclear science
Year: 2015, Jahrgang: 62, Heft: 1, Pages: 148-163
ISSN:1558-1578
Online-Zugang: Volltext
Verfasserangaben:Jens Muders and Jürgen Hesser

MARC

LEADER 00000caa a2200000 c 4500
001 1583934715
003 DE-627
005 20220815062654.0
007 cr uuu---uuuuu
008 181121s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TNS.2014.2364637  |2 doi 
035 |a (DE-627)1583934715 
035 |a (DE-576)513934715 
035 |a (DE-599)BSZ513934715 
035 |a (OCoLC)1341023957 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Muders, Jens  |e VerfasserIn  |0 (DE-588)1070177008  |0 (DE-627)823325814  |0 (DE-576)429798512  |4 aut 
245 1 0 |a Projection-wise filter optimization for limited-angle cone-beam CT using the approximate inverse  |c Jens Muders and Jürgen Hesser 
264 1 |c 2015 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.11.2018 
500 |a Date of publication November 14, 2014 
520 |a In this paper, we present a novel and efficient approach for the optimization of filters for limited-angle cone beam computed tomography (CBCT). Our method is based on the theory of approximate inverse (AI) and uses a simultaneous iterative reconstruction technique (SIRT) to estimate a view-dependent reconstruction kernel. From this kernel we then derive a set of 2-D filters that can be applied in a filtered backprojection (FBP) algorithm. By construction the resulting filters are independent of the measured data, so that they can be precomputed for a given geometric setup and be reused with different projection datasets. Our approach is the first application of the AI for 3-D limited-angle CBCT supported by iterative reconstruction, such that in comparison to existing methods, it does not rely on additional reference measurements or on the existence of an analytical inversion formula. However, our method reaches results better than standard FBP methods. Additionally, we provide a general scheme that allows the transfer of our method to other system geometries and gives us the ability to extend it with more complex filters. We will conduct several experiments with simulated and real data where we examine the image quality of our method in comparison to standard FBP and SIRT. The results will show that our angle-optimized FBP has a higher contrast-to-artifact ratio than FBP. In addition to this, we analyze the image quality perpendicular to the in-focus plane by the use of the artifact spread function and show that our technique can be employed to reduce the amount of ghosting artifacts. 
650 4 |a optimisation 
650 4 |a 3D limited-angle CBCT 
650 4 |a analytical inversion formula 
650 4 |a approximate inverse 
650 4 |a Approximation methods 
650 4 |a artifact spread function 
650 4 |a Artificial intelligence 
650 4 |a Computed tomography 
650 4 |a Computed tomography (CT) 
650 4 |a computerised tomography 
650 4 |a contrast-to-artifact ratio 
650 4 |a Detectors 
650 4 |a digital filters 
650 4 |a filtered backprojection algorithm 
650 4 |a filtering algorithms 
650 4 |a focal planes 
650 4 |a ghosting artifacts 
650 4 |a image quality 
650 4 |a image reconstruction 
650 4 |a Image reconstruction 
650 4 |a in-focus plane 
650 4 |a iterative algorithms 
650 4 |a iterative methods 
650 4 |a Iterative methods 
650 4 |a Kernel 
650 4 |a limited-angle cone-beam computed tomography 
650 4 |a nondestructive testing 
650 4 |a projection algorithms 
650 4 |a projection-wise filter optimization 
650 4 |a reconstruction algorithms 
650 4 |a simultaneous iterative reconstruction technique 
650 4 |a SIRT 
650 4 |a standard FBP method 
650 4 |a view-dependent reconstruction kernel 
650 4 |a volume measurement 
650 4 |a X-ray tomography 
700 1 |a Hesser, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1020647353  |0 (DE-627)691291071  |0 (DE-576)361513739  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on nuclear science  |d New York, NY : IEEE, 1963  |g 62(2015), 1, Seite 148-163  |h Online-Ressource  |w (DE-627)320645835  |w (DE-600)2025398-9  |w (DE-576)094110956  |x 1558-1578  |7 nnas 
773 1 8 |g volume:62  |g year:2015  |g number:1  |g pages:148-163  |g extent:16  |a Projection-wise filter optimization for limited-angle cone-beam CT using the approximate inverse 
951 |a AR 
992 |a 20181121 
993 |a Article 
994 |a 2015 
998 |g 1020647353  |a Hesser, Jürgen  |m 1020647353:Hesser, Jürgen  |d 60000  |d 63000  |e 60000PH1020647353  |e 63000PH1020647353  |k 0/60000/  |k 1/60000/63000/  |p 2  |y j 
999 |a KXP-PPN1583934715  |e 3032871662 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Projection-wise filter optimization for limited-angle cone-beam CT using the approximate inverse","title":"Projection-wise filter optimization for limited-angle cone-beam CT using the approximate inverse"}],"recId":"1583934715","origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"2015"}],"language":["eng"],"person":[{"roleDisplay":"VerfasserIn","given":"Jens","role":"aut","family":"Muders","display":"Muders, Jens"},{"roleDisplay":"VerfasserIn","given":"Jürgen","role":"aut","family":"Hesser","display":"Hesser, Jürgen"}],"name":{"displayForm":["Jens Muders and Jürgen Hesser"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1583934715"],"doi":["10.1109/TNS.2014.2364637"]},"physDesc":[{"extent":"16 S."}],"note":["Gesehen am 21.11.2018","Date of publication November 14, 2014"],"relHost":[{"title":[{"subtitle":"a publication of the IEEE Nuclear and Plasma Sciences Society","title":"IEEE transactions on nuclear science","title_sort":"IEEE transactions on nuclear science"}],"recId":"320645835","disp":"Institute of Electrical and Electronics EngineersIEEE transactions on nuclear science","origin":[{"publisher":"IEEE","publisherPlace":"New York, NY","dateIssuedDisp":"1963-","dateIssuedKey":"1963"}],"language":["eng"],"titleAlt":[{"title":"Transactions on nuclear science"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"issn":["1558-1578"],"zdb":["2025398-9"],"eki":["320645835"]},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 12.12.07"],"part":{"pages":"148-163","issue":"1","text":"62(2015), 1, Seite 148-163","volume":"62","extent":"16","year":"2015"},"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers","roleDisplay":"VerfasserIn"}],"pubHistory":["10.1963 -"]}]} 
SRT |a MUDERSJENSPROJECTION2015