A twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groups

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Weselmann, Uwe (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2012
In: Compositio mathematica
Year: 2012, Jahrgang: 148, Heft: 1, Pages: 65-120
ISSN:1570-5846
DOI: 10.1112/S0010437X11005641
Online-Zugang:Verlag, Volltext: http://dx.doi.org/ 10.1112/S0010437X11005641
Volltext
Verfasserangaben:Uwe Weselmann

MARC

LEADER 00000caa a2200000 c 4500
001 1584499605
003 DE-627
005 20220815065441.0
007 cr uuu---uuuuu
008 181127s2012 xx |||||o 00| ||eng c
024 7 |a 10.1112/S0010437X11005641  |2 doi 
035 |a (DE-627)1584499605 
035 |a (DE-576)514499605 
035 |a (DE-599)BSZ514499605 
035 |a (OCoLC)1341024464 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Weselmann, Uwe  |e VerfasserIn  |0 (DE-588)1172311536  |0 (DE-627)1041112874  |0 (DE-576)514503122  |4 aut 
245 1 2 |a A twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groups  |c Uwe Weselmann 
264 1 |c January 2012 
300 |a 56 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online by Cambridge University Press: 09 November 2011 
500 |a Gesehen am 27.11.2018 
500 |a For the locally symmetric space X attached to an arithmetic subgroup of an algebraic group G of Q-rank r we construct a compact manifold X˜ by glueing together 2r copies of the Borel-Serre-compactification of X. We apply the classical Lefschetz fixed point formula to X˜ and get formulas for the traces of Hecke operators H acting on the cohomology of X. We allow twistings of H by outer automorphisms η of G. We stabilize this topological trace formula and compare it with the corresponding formula for an endoscopic group of the pair (G, η). As an application we deduce a weak lifting theorem for the lifting of automorphic representations from Siegel modular groups to general linear groups 
773 0 8 |i Enthalten in  |t Compositio mathematica  |d Cambridge : Cambridge Univ. Press, 1935  |g 148(2012), 1, Seite 65-120  |h Online-Ressource  |w (DE-627)266882692  |w (DE-600)1468114-6  |w (DE-576)102668906  |x 1570-5846  |7 nnas  |a A twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groups 
773 1 8 |g volume:148  |g year:2012  |g number:1  |g pages:65-120  |g extent:56  |a A twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groups 
856 4 0 |u http://dx.doi.org/ 10.1112/S0010437X11005641  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20181127 
993 |a Article 
994 |a 2012 
998 |g 1172311536  |a Weselmann, Uwe  |m 1172311536:Weselmann, Uwe  |p 1  |x j  |y j 
999 |a KXP-PPN1584499605  |e 3034171099 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Weselmann, Uwe","given":"Uwe","family":"Weselmann"}],"title":[{"title_sort":"twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groups","title":"A twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groups"}],"language":["eng"],"recId":"1584499605","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Published online by Cambridge University Press: 09 November 2011","Gesehen am 27.11.2018","For the locally symmetric space X attached to an arithmetic subgroup of an algebraic group G of Q-rank r we construct a compact manifold X˜ by glueing together 2r copies of the Borel-Serre-compactification of X. We apply the classical Lefschetz fixed point formula to X˜ and get formulas for the traces of Hecke operators H acting on the cohomology of X. We allow twistings of H by outer automorphisms η of G. We stabilize this topological trace formula and compare it with the corresponding formula for an endoscopic group of the pair (G, η). As an application we deduce a weak lifting theorem for the lifting of automorphic representations from Siegel modular groups to general linear groups"],"name":{"displayForm":["Uwe Weselmann"]},"id":{"eki":["1584499605"],"doi":["10.1112/S0010437X11005641"]},"origin":[{"dateIssuedKey":"2012","dateIssuedDisp":"January 2012"}],"relHost":[{"pubHistory":["1.1935 -"],"part":{"extent":"56","text":"148(2012), 1, Seite 65-120","volume":"148","issue":"1","pages":"65-120","year":"2012"},"disp":"A twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groupsCompositio mathematica","note":["Gesehen am 05.03.2018"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"266882692","title":[{"title":"Compositio mathematica","title_sort":"Compositio mathematica"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1935-","dateIssuedKey":"1935","publisher":"Cambridge Univ. Press ; Kluwer","publisherPlace":"Cambridge ; Dordrecht [u.a.]"}],"id":{"issn":["1570-5846"],"eki":["266882692"],"zdb":["1468114-6"]}}],"physDesc":[{"extent":"56 S."}]} 
SRT |a WESELMANNUTWISTEDTOP2012