Dynamical topological transitions in the massive Schwinger model with a [theta]-term

Aiming at a better understanding of anomalous and topological effects in gauge theories out-of-equilibrium, we study the real-time dynamics of a prototype model for CP-violation, the massive Schwinger model with a $\theta$-term. We identify dynamical quantum phase transitions between different topol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zache, Torsten Victor (VerfasserIn) , Schneider, Jan Thorben (VerfasserIn) , Jendrzejewski, Fred (VerfasserIn) , Berges, Jürgen (VerfasserIn) , Hauke, Philipp (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 23 Aug 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1808.07885
Volltext
Verfasserangaben:T.V. Zache, N. Mueller, J.T. Schneider, F. Jendrzejewski, J. Berges, and P. Hauke
Beschreibung
Zusammenfassung:Aiming at a better understanding of anomalous and topological effects in gauge theories out-of-equilibrium, we study the real-time dynamics of a prototype model for CP-violation, the massive Schwinger model with a $\theta$-term. We identify dynamical quantum phase transitions between different topological sectors that appear after sufficiently strong quenches of the $\theta$-parameter. Moreover, we establish a general dynamical topological order parameter, which can be accessed through fermion two-point correlators and, importantly, which can be applied for interacting theories. Enabled by this result, we show that the topological transitions persist beyond the weak-coupling regime. Finally, these effects can be observed with table-top experiments based on existing cold-atom, superconducting-qubit, and trapped-ion technology. Our work, thus, presents a significant step towards quantum simulating topological and anomalous real-time phenomena relevant to nuclear and high-energy physics.
Beschreibung:Im Titel wird theta als griechischer Buchstabe dargestellt
Gesehen am 06.12.2018
Beschreibung:Online Resource