Optimal lattice configurations for interacting spatially extended particles

We investigate lattice energies for radially symmetric, spatially extended particles interacting via a radial potential and arranged on the sites of a two-dimensional Bravais lattice. We show the global minimality of the triangular lattice among Bravais lattices of fixed density in two cases: In the...

Full description

Saved in:
Bibliographic Details
Main Authors: Bétermin, Laurent (Author) , Knüpfer, Hans (Author)
Format: Article (Journal)
Language:English
Published: October 2018
In: Letters in mathematical physics
Year: 2018, Volume: 108, Issue: 10, Pages: 2213-2228
ISSN:1573-0530
DOI:10.1007/s11005-018-1077-9
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/s11005-018-1077-9
Verlag, Volltext: https://link.springer.com/article/10.1007/s11005-018-1077-9
Get full text
Author Notes:Laurent Bétermin, Hans Knüpfer

MARC

LEADER 00000caa a2200000 c 4500
001 1585600547
003 DE-627
005 20220815082359.0
007 cr uuu---uuuuu
008 181217s2018 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11005-018-1077-9  |2 doi 
035 |a (DE-627)1585600547 
035 |a (DE-576)515600547 
035 |a (DE-599)BSZ515600547 
035 |a (OCoLC)1341030948 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Bétermin, Laurent  |d 1983-  |e VerfasserIn  |0 (DE-588)1160766312  |0 (DE-627)1024197794  |0 (DE-576)506179990  |4 aut 
245 1 0 |a Optimal lattice configurations for interacting spatially extended particles  |c Laurent Bétermin, Hans Knüpfer 
264 1 |c October 2018 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 17.12.2018 
520 |a We investigate lattice energies for radially symmetric, spatially extended particles interacting via a radial potential and arranged on the sites of a two-dimensional Bravais lattice. We show the global minimality of the triangular lattice among Bravais lattices of fixed density in two cases: In the first case, the distribution of mass is sufficiently concentrated around the lattice points, and the mass concentration depends on the density we have fixed. In the second case, both interacting potential and density of the distribution of mass are described by completely monotone functions in which case the optimality holds at any fixed density. 
650 4 |a Calculus of variations 
650 4 |a Crystal 
650 4 |a Lattice energy 
650 4 |a Primary 74G65 
650 4 |a Secondary 82B20 
650 4 |a Triangular lattice 
700 1 |a Knüpfer, Hans  |d 1977-  |e VerfasserIn  |0 (DE-588)133883469  |0 (DE-627)557870542  |0 (DE-576)300169663  |4 aut 
773 0 8 |i Enthalten in  |t Letters in mathematical physics  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1975  |g 108(2018), 10, Seite 2213-2228  |h Online-Ressource  |w (DE-627)271348208  |w (DE-600)1479697-1  |w (DE-576)102669082  |x 1573-0530  |7 nnas  |a Optimal lattice configurations for interacting spatially extended particles 
773 1 8 |g volume:108  |g year:2018  |g number:10  |g pages:2213-2228  |g extent:16  |a Optimal lattice configurations for interacting spatially extended particles 
856 4 0 |u http://dx.doi.org/10.1007/s11005-018-1077-9  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s11005-018-1077-9  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20181217 
993 |a Article 
994 |a 2018 
998 |g 133883469  |a Knüpfer, Hans  |m 133883469:Knüpfer, Hans  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PK133883469  |e 110200PK133883469  |e 110000PK133883469  |e 110400PK133883469  |e 700000PK133883469  |e 708000PK133883469  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
998 |g 1160766312  |a Bétermin, Laurent  |m 1160766312:Bétermin, Laurent  |p 1  |x j 
999 |a KXP-PPN1585600547  |e 3038450715 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1585600547","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 17.12.2018"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Bétermin, Laurent","given":"Laurent","family":"Bétermin"},{"display":"Knüpfer, Hans","roleDisplay":"VerfasserIn","role":"aut","family":"Knüpfer","given":"Hans"}],"title":[{"title":"Optimal lattice configurations for interacting spatially extended particles","title_sort":"Optimal lattice configurations for interacting spatially extended particles"}],"relHost":[{"id":{"zdb":["1479697-1"],"eki":["271348208"],"issn":["1573-0530"]},"origin":[{"publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1975","dateIssuedDisp":"1975-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"a journal for the rapid dissemination of short contributions in the field of mathematical physics","title":"Letters in mathematical physics","title_sort":"Letters in mathematical physics"}],"recId":"271348208","language":["eng"],"note":["Gesehen am 01.12.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Optimal lattice configurations for interacting spatially extended particlesLetters in mathematical physics","part":{"volume":"108","text":"108(2018), 10, Seite 2213-2228","extent":"16","year":"2018","issue":"10","pages":"2213-2228"},"pubHistory":["1.1975/77 -"]}],"physDesc":[{"extent":"16 S."}],"name":{"displayForm":["Laurent Bétermin, Hans Knüpfer"]},"id":{"eki":["1585600547"],"doi":["10.1007/s11005-018-1077-9"]},"origin":[{"dateIssuedDisp":"October 2018","dateIssuedKey":"2018"}]} 
SRT |a BETERMINLAOPTIMALLAT2018