Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations

We consider a 2 time scale nonlinear system of ordinary differential equations. The small parameter of the system is the ratio ϵ of the time scales. We search for an approximation involving only the slow time unknowns and valid uniformly for all times at order O(ϵ2). A classical approach to study th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marciniak-Czochra, Anna (VerfasserIn) , Mikelić, Andro (VerfasserIn) , Stiehl, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 30 September 2018
In: Mathematical methods in the applied sciences
Year: 2018, Jahrgang: 41, Heft: 14, Pages: 5691-5710
ISSN:1099-1476
DOI:10.1002/mma.5107
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1002/mma.5107
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5107
Volltext
Verfasserangaben:Anna Marciniak‐Czochra, Andro Mikelić, Thomas Stiehl

MARC

LEADER 00000caa a2200000 c 4500
001 1585610593
003 DE-627
005 20220815082558.0
007 cr uuu---uuuuu
008 181217s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/mma.5107  |2 doi 
035 |a (DE-627)1585610593 
035 |a (DE-576)515610593 
035 |a (DE-599)BSZ515610593 
035 |a (OCoLC)1341027254 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
245 1 0 |a Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations  |c Anna Marciniak‐Czochra, Andro Mikelić, Thomas Stiehl 
264 1 |c 30 September 2018 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 17.12.2018 
520 |a We consider a 2 time scale nonlinear system of ordinary differential equations. The small parameter of the system is the ratio ϵ of the time scales. We search for an approximation involving only the slow time unknowns and valid uniformly for all times at order O(ϵ2). A classical approach to study these problems is Tikhonov's singular perturbation theorem. We develop an approach leading to a higher order approximation using the renormalization group (RG) method. We apply it in 2 steps. In the first step, we show that the RG method allows for approximation of the fast time variables by their RG expansion taken at the slow time unknowns. Next, we study the slow time equations, where the fast time unknowns are replaced by their RG expansion. This allows to rigorously show the second order uniform error estimate. Our result is a higher order extension of Hoppensteadt's work on the Tikhonov singular perturbation theorem for infinite times. The proposed procedure is suitable for problems from applications, and it is computationally less demanding than the classical Vasil'eva-O'Malley expansion. We apply the developed method to a mathematical model of stem cell dynamics. 
650 4 |a higher order approximation 
650 4 |a ordinary differential equations 
650 4 |a quasi steady-state approximation 
650 4 |a renormalization group 
650 4 |a singular perturbations 
700 1 |a Mikelić, Andro  |d 1956-  |e VerfasserIn  |0 (DE-588)1121241409  |0 (DE-627)874185033  |0 (DE-576)175876932  |4 aut 
700 1 |a Stiehl, Thomas  |e VerfasserIn  |0 (DE-588)1053844999  |0 (DE-627)790793342  |0 (DE-576)409783927  |4 aut 
773 0 8 |i Enthalten in  |t Mathematical methods in the applied sciences  |d Chichester, West Sussex : Wiley, 1979  |g 41(2018), 14, Seite 5691-5710  |h Online-Ressource  |w (DE-627)270936009  |w (DE-600)1478610-2  |w (DE-576)095660046  |x 1099-1476  |7 nnas  |a Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations 
773 1 8 |g volume:41  |g year:2018  |g number:14  |g pages:5691-5710  |g extent:20  |a Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations 
856 4 0 |u http://dx.doi.org/10.1002/mma.5107  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5107  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20181217 
993 |a Article 
994 |a 2018 
998 |g 1053844999  |a Stiehl, Thomas  |m 1053844999:Stiehl, Thomas  |d 700000  |d 708000  |e 700000PS1053844999  |e 708000PS1053844999  |k 0/700000/  |k 1/700000/708000/  |p 3  |y j 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM1044379626  |e 110200PM1044379626  |e 110000PM1044379626  |e 110400PM1044379626  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1585610593  |e 3038479675 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1585610593","physDesc":[{"extent":"20 S."}],"name":{"displayForm":["Anna Marciniak‐Czochra, Andro Mikelić, Thomas Stiehl"]},"id":{"doi":["10.1002/mma.5107"],"eki":["1585610593"]},"relHost":[{"id":{"doi":["10.1002/(ISSN)1099-1476"],"eki":["270936009"],"issn":["1099-1476"],"zdb":["1478610-2"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1979 -"],"recId":"270936009","note":["Gesehen am 29.04.2013"],"title":[{"title_sort":"Mathematical methods in the applied sciences","title":"Mathematical methods in the applied sciences"}],"origin":[{"publisher":"Wiley","dateIssuedKey":"1979","publisherPlace":"Chichester, West Sussex","dateIssuedDisp":"1979-"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2018","pages":"5691-5710","text":"41(2018), 14, Seite 5691-5710","extent":"20","volume":"41","issue":"14"},"language":["eng"],"disp":"Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equationsMathematical methods in the applied sciences"}],"person":[{"role":"aut","given":"Anna","family":"Marciniak-Czochra","display":"Marciniak-Czochra, Anna"},{"given":"Andro","role":"aut","display":"Mikelić, Andro","family":"Mikelić"},{"given":"Thomas","role":"aut","family":"Stiehl","display":"Stiehl, Thomas"}],"language":["eng"],"note":["Gesehen am 17.12.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"30 September 2018","dateIssuedKey":"2018"}],"title":[{"title":"Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations","title_sort":"Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations"}]} 
SRT |a MARCINIAKCRENORMALIZ3020