Approximate variational inference based on a finite sample of Gaussian latent variables
Variational methods are employed in situations where exact Bayesian inference becomes intractable due to the difficulty in performing certain integrals. Typically, variational methods postulate a tractable posterior and formulate a lower bound on the desired integral to be approximated, e.g. margina...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
May 2016
|
| In: |
Pattern analysis and applications
Year: 2016, Jahrgang: 19, Heft: 2, Pages: 475-485 |
| ISSN: | 1433-755X |
| DOI: | 10.1007/s10044-015-0496-9 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1007/s10044-015-0496-9 Verlag, Volltext: https://link.springer.com/article/10.1007/s10044-015-0496-9 |
| Verfasserangaben: | Nikolaos Gianniotis, Christoph Schnörr, Christian Molkenthin, Sanjay Singh Bora |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1585753386 | ||
| 003 | DE-627 | ||
| 005 | 20220815083857.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 181219s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10044-015-0496-9 |2 doi | |
| 035 | |a (DE-627)1585753386 | ||
| 035 | |a (DE-576)515753386 | ||
| 035 | |a (DE-599)BSZ515753386 | ||
| 035 | |a (OCoLC)1341031297 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Gianniotis, Nikolaos |e VerfasserIn |0 (DE-588)1173849874 |0 (DE-627)1043662219 |0 (DE-576)515754323 |4 aut | |
| 245 | 1 | 0 | |a Approximate variational inference based on a finite sample of Gaussian latent variables |c Nikolaos Gianniotis, Christoph Schnörr, Christian Molkenthin, Sanjay Singh Bora |
| 264 | 1 | |c May 2016 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 30 June 2015 | ||
| 500 | |a Gesehen am 19.12.2018 | ||
| 520 | |a Variational methods are employed in situations where exact Bayesian inference becomes intractable due to the difficulty in performing certain integrals. Typically, variational methods postulate a tractable posterior and formulate a lower bound on the desired integral to be approximated, e.g. marginal likelihood. The lower bound is then optimised with respect to its free parameters, the so-called variational parameters. However, this is not always possible as for certain integrals it is very challenging (or tedious) to come up with a suitable lower bound. Here, we propose a simple scheme that overcomes some of the awkward cases where the usual variational treatment becomes difficult. The scheme relies on a rewriting of the lower bound on the model log-likelihood. We demonstrate the proposed scheme on a number of synthetic and real examples, as well as on a real geophysical model for which the standard variational approaches are inapplicable. | ||
| 650 | 4 | |a Bayesian inference | |
| 650 | 4 | |a Expectation maximisation | |
| 650 | 4 | |a Posterior estimation | |
| 700 | 1 | |a Schnörr, Christoph |e VerfasserIn |0 (DE-588)1023033348 |0 (DE-627)717351017 |0 (DE-576)168404540 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Pattern analysis and applications |d London : Springer, 1998 |g 19(2016), 2, Seite 475-485 |h Online-Ressource |w (DE-627)301511616 |w (DE-600)1484514-3 |w (DE-576)11408825X |x 1433-755X |7 nnas |a Approximate variational inference based on a finite sample of Gaussian latent variables |
| 773 | 1 | 8 | |g volume:19 |g year:2016 |g number:2 |g pages:475-485 |g extent:11 |a Approximate variational inference based on a finite sample of Gaussian latent variables |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s10044-015-0496-9 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s10044-015-0496-9 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20181219 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1023033348 |a Schnörr, Christoph |m 1023033348:Schnörr, Christoph |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 708000 |e 110000PS1023033348 |e 110200PS1023033348 |e 110000PS1023033348 |e 110400PS1023033348 |e 700000PS1023033348 |e 708000PS1023033348 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/708000/ |p 2 | ||
| 999 | |a KXP-PPN1585753386 |e 3038785172 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1585753386","name":{"displayForm":["Nikolaos Gianniotis, Christoph Schnörr, Christian Molkenthin, Sanjay Singh Bora"]},"physDesc":[{"extent":"11 S."}],"relHost":[{"part":{"year":"2016","text":"19(2016), 2, Seite 475-485","pages":"475-485","extent":"11","volume":"19","issue":"2"},"origin":[{"publisher":"Springer","dateIssuedKey":"1998","dateIssuedDisp":"1998-","publisherPlace":"London ; Berlin [u.a.]"}],"note":["Gesehen am 28.03.06"],"titleAlt":[{"title":"PAA"}],"title":[{"title":"Pattern analysis and applications","title_sort":"Pattern analysis and applications","subtitle":"PAA"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"disp":"Approximate variational inference based on a finite sample of Gaussian latent variablesPattern analysis and applications","id":{"zdb":["1484514-3"],"issn":["1433-755X"],"eki":["301511616"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"301511616","pubHistory":["1.1998 -"]}],"id":{"eki":["1585753386"],"doi":["10.1007/s10044-015-0496-9"]},"person":[{"role":"aut","given":"Nikolaos","family":"Gianniotis","display":"Gianniotis, Nikolaos"},{"display":"Schnörr, Christoph","family":"Schnörr","given":"Christoph","role":"aut"}],"language":["eng"],"note":["Published online: 30 June 2015","Gesehen am 19.12.2018"],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"May 2016"}],"title":[{"title":"Approximate variational inference based on a finite sample of Gaussian latent variables","title_sort":"Approximate variational inference based on a finite sample of Gaussian latent variables"}],"type":{"media":"Online-Ressource","bibl":"article-journal"}} | ||
| SRT | |a GIANNIOTISAPPROXIMAT2016 | ||