Multicuts and perturb & MAP for probabilistic graph clustering

We present a probabilistic graphical model formulation for the graph clustering problem. This enables us to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and to rectify local data term cues so as to close contours and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kappes, Jörg Hendrik (VerfasserIn) , Swoboda, Paul (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: October 2016
In: Journal of mathematical imaging and vision
Year: 2016, Jahrgang: 56, Heft: 2, Pages: 221-237
ISSN:1573-7683
DOI:10.1007/s10851-016-0659-3
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1007/s10851-016-0659-3
Verlag, Volltext: https://link.springer.com/article/10.1007/s10851-016-0659-3
Volltext
Verfasserangaben:Jörg Hendrik Kappes, Paul Swoboda, Bogdan Savchynskyy, Tamir Hazan, Christoph Schnörr

MARC

LEADER 00000caa a2200000 c 4500
001 1585756415
003 DE-627
005 20220815083925.0
007 cr uuu---uuuuu
008 181219s2016 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10851-016-0659-3  |2 doi 
035 |a (DE-627)1585756415 
035 |a (DE-576)515756415 
035 |a (DE-599)BSZ515756415 
035 |a (OCoLC)1341031311 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kappes, Jörg Hendrik  |e VerfasserIn  |0 (DE-588)1011935481  |0 (DE-627)660877821  |0 (DE-576)344648818  |4 aut 
245 1 0 |a Multicuts and perturb & MAP for probabilistic graph clustering  |c Jörg Hendrik Kappes, Paul Swoboda, Bogdan Savchynskyy, Tamir Hazan, Christoph Schnörr 
264 1 |c October 2016 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.12.2018 
520 |a We present a probabilistic graphical model formulation for the graph clustering problem. This enables us to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and to rectify local data term cues so as to close contours and to obtain valid partitions. We exploit recent progress on globally optimal MAP inference by integer programming and on perturbation-based approximations of the log-partition function, in order to sample clusterings and to estimate marginal distributions of node-pairs both more accurately and more efficiently than state-of-the-art methods. Our approach works for any graphically represented problem instance. This is demonstrated for image segmentation and social network cluster analysis. Our mathematical ansatz should be relevant also for other combinatorial problems. 
650 4 |a Correlation clustering 
650 4 |a Graphical models 
650 4 |a Multicut 
650 4 |a Perturb and MAP 
700 1 |a Swoboda, Paul  |e VerfasserIn  |0 (DE-588)1066353379  |0 (DE-627)817351434  |0 (DE-576)425790231  |4 aut 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
773 0 8 |i Enthalten in  |t Journal of mathematical imaging and vision  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1992  |g 56(2016), 2, Seite 221-237  |h Online-Ressource  |w (DE-627)271179465  |w (DE-600)1479363-5  |w (DE-576)110512847  |x 1573-7683  |7 nnas  |a Multicuts and perturb & MAP for probabilistic graph clustering 
773 1 8 |g volume:56  |g year:2016  |g number:2  |g pages:221-237  |g extent:17  |a Multicuts and perturb & MAP for probabilistic graph clustering 
856 4 0 |u http://dx.doi.org/10.1007/s10851-016-0659-3  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s10851-016-0659-3  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20181219 
993 |a Article 
994 |a 2016 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PS1023033348  |e 110200PS1023033348  |e 110000PS1023033348  |e 110400PS1023033348  |e 700000PS1023033348  |e 708000PS1023033348  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 5  |y j 
998 |g 1066353379  |a Swoboda, Paul  |m 1066353379:Swoboda, Paul  |p 2 
998 |g 1011935481  |a Kappes, Jörg Hendrik  |m 1011935481:Kappes, Jörg Hendrik  |p 1  |x j 
999 |a KXP-PPN1585756415  |e 3038797189 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Jörg Hendrik","role":"aut","family":"Kappes","display":"Kappes, Jörg Hendrik"},{"family":"Swoboda","display":"Swoboda, Paul","given":"Paul","role":"aut"},{"display":"Schnörr, Christoph","family":"Schnörr","role":"aut","given":"Christoph"}],"language":["eng"],"note":["Gesehen am 19.12.2018"],"title":[{"title_sort":"Multicuts and perturb & MAP for probabilistic graph clustering","title":"Multicuts and perturb & MAP for probabilistic graph clustering"}],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"October 2016"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1585756415","name":{"displayForm":["Jörg Hendrik Kappes, Paul Swoboda, Bogdan Savchynskyy, Tamir Hazan, Christoph Schnörr"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"id":{"issn":["1573-7683"],"eki":["271179465"],"zdb":["1479363-5"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1992 -"],"recId":"271179465","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.11.05"],"origin":[{"publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1992","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedDisp":"1992-"}],"title":[{"title_sort":"Journal of mathematical imaging and vision","title":"Journal of mathematical imaging and vision"}],"part":{"issue":"2","text":"56(2016), 2, Seite 221-237","pages":"221-237","year":"2016","volume":"56","extent":"17"},"language":["eng"],"disp":"Multicuts and perturb & MAP for probabilistic graph clusteringJournal of mathematical imaging and vision"}],"id":{"eki":["1585756415"],"doi":["10.1007/s10851-016-0659-3"]}} 
SRT |a KAPPESJOERMULTICUTSA2016