Multicuts and perturb & MAP for probabilistic graph clustering
We present a probabilistic graphical model formulation for the graph clustering problem. This enables us to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and to rectify local data term cues so as to close contours and t...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
October 2016
|
| In: |
Journal of mathematical imaging and vision
Year: 2016, Jahrgang: 56, Heft: 2, Pages: 221-237 |
| ISSN: | 1573-7683 |
| DOI: | 10.1007/s10851-016-0659-3 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1007/s10851-016-0659-3 Verlag, Volltext: https://link.springer.com/article/10.1007/s10851-016-0659-3 |
| Verfasserangaben: | Jörg Hendrik Kappes, Paul Swoboda, Bogdan Savchynskyy, Tamir Hazan, Christoph Schnörr |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1585756415 | ||
| 003 | DE-627 | ||
| 005 | 20220815083925.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 181219s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10851-016-0659-3 |2 doi | |
| 035 | |a (DE-627)1585756415 | ||
| 035 | |a (DE-576)515756415 | ||
| 035 | |a (DE-599)BSZ515756415 | ||
| 035 | |a (OCoLC)1341031311 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Kappes, Jörg Hendrik |e VerfasserIn |0 (DE-588)1011935481 |0 (DE-627)660877821 |0 (DE-576)344648818 |4 aut | |
| 245 | 1 | 0 | |a Multicuts and perturb & MAP for probabilistic graph clustering |c Jörg Hendrik Kappes, Paul Swoboda, Bogdan Savchynskyy, Tamir Hazan, Christoph Schnörr |
| 264 | 1 | |c October 2016 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 19.12.2018 | ||
| 520 | |a We present a probabilistic graphical model formulation for the graph clustering problem. This enables us to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and to rectify local data term cues so as to close contours and to obtain valid partitions. We exploit recent progress on globally optimal MAP inference by integer programming and on perturbation-based approximations of the log-partition function, in order to sample clusterings and to estimate marginal distributions of node-pairs both more accurately and more efficiently than state-of-the-art methods. Our approach works for any graphically represented problem instance. This is demonstrated for image segmentation and social network cluster analysis. Our mathematical ansatz should be relevant also for other combinatorial problems. | ||
| 650 | 4 | |a Correlation clustering | |
| 650 | 4 | |a Graphical models | |
| 650 | 4 | |a Multicut | |
| 650 | 4 | |a Perturb and MAP | |
| 700 | 1 | |a Swoboda, Paul |e VerfasserIn |0 (DE-588)1066353379 |0 (DE-627)817351434 |0 (DE-576)425790231 |4 aut | |
| 700 | 1 | |a Schnörr, Christoph |e VerfasserIn |0 (DE-588)1023033348 |0 (DE-627)717351017 |0 (DE-576)168404540 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of mathematical imaging and vision |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1992 |g 56(2016), 2, Seite 221-237 |h Online-Ressource |w (DE-627)271179465 |w (DE-600)1479363-5 |w (DE-576)110512847 |x 1573-7683 |7 nnas |a Multicuts and perturb & MAP for probabilistic graph clustering |
| 773 | 1 | 8 | |g volume:56 |g year:2016 |g number:2 |g pages:221-237 |g extent:17 |a Multicuts and perturb & MAP for probabilistic graph clustering |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s10851-016-0659-3 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s10851-016-0659-3 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20181219 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1023033348 |a Schnörr, Christoph |m 1023033348:Schnörr, Christoph |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 708000 |e 110000PS1023033348 |e 110200PS1023033348 |e 110000PS1023033348 |e 110400PS1023033348 |e 700000PS1023033348 |e 708000PS1023033348 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/708000/ |p 5 |y j | ||
| 998 | |g 1066353379 |a Swoboda, Paul |m 1066353379:Swoboda, Paul |p 2 | ||
| 998 | |g 1011935481 |a Kappes, Jörg Hendrik |m 1011935481:Kappes, Jörg Hendrik |p 1 |x j | ||
| 999 | |a KXP-PPN1585756415 |e 3038797189 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Jörg Hendrik","role":"aut","family":"Kappes","display":"Kappes, Jörg Hendrik"},{"family":"Swoboda","display":"Swoboda, Paul","given":"Paul","role":"aut"},{"display":"Schnörr, Christoph","family":"Schnörr","role":"aut","given":"Christoph"}],"language":["eng"],"note":["Gesehen am 19.12.2018"],"title":[{"title_sort":"Multicuts and perturb & MAP for probabilistic graph clustering","title":"Multicuts and perturb & MAP for probabilistic graph clustering"}],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"October 2016"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1585756415","name":{"displayForm":["Jörg Hendrik Kappes, Paul Swoboda, Bogdan Savchynskyy, Tamir Hazan, Christoph Schnörr"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"id":{"issn":["1573-7683"],"eki":["271179465"],"zdb":["1479363-5"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1992 -"],"recId":"271179465","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.11.05"],"origin":[{"publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1992","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedDisp":"1992-"}],"title":[{"title_sort":"Journal of mathematical imaging and vision","title":"Journal of mathematical imaging and vision"}],"part":{"issue":"2","text":"56(2016), 2, Seite 221-237","pages":"221-237","year":"2016","volume":"56","extent":"17"},"language":["eng"],"disp":"Multicuts and perturb & MAP for probabilistic graph clusteringJournal of mathematical imaging and vision"}],"id":{"eki":["1585756415"],"doi":["10.1007/s10851-016-0659-3"]}} | ||
| SRT | |a KAPPESJOERMULTICUTSA2016 | ||