Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model: mean-field analysis

We complement previous functional renormalization group (fRG) studies of the two-dimensional Hubbard model by mean-field calculations. The focus falls on Van Hove filling and the the hopping amplitude t'/t=0.341. The fRG data suggest a quantum critical point (QCP) in this region and in its vici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Veschgini, Kambis (VerfasserIn) , Salmhofer, Manfred (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 31 Aug 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1806.08930
Volltext
Verfasserangaben:Kambis Veschgini and Manfred Salmhofer

MARC

LEADER 00000caa a2200000 c 4500
001 1585789011
003 DE-627
005 20220815084038.0
007 cr uuu---uuuuu
008 181220s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1585789011 
035 |a (DE-576)515789011 
035 |a (DE-599)BSZ515789011 
035 |a (OCoLC)1341031285 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Veschgini, Kambis  |e VerfasserIn  |0 (DE-588)1052119220  |0 (DE-627)787846155  |0 (DE-576)407868798  |4 aut 
245 1 0 |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model  |b mean-field analysis  |c Kambis Veschgini and Manfred Salmhofer 
264 1 |c 31 Aug 2018 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.11.2020 
520 |a We complement previous functional renormalization group (fRG) studies of the two-dimensional Hubbard model by mean-field calculations. The focus falls on Van Hove filling and the the hopping amplitude t'/t=0.341. The fRG data suggest a quantum critical point (QCP) in this region and in its vicinity a singular fermionic self-energy, Im $\Sigma(\omega)/\omega \sim |\omega|^{-\gamma}$ with $\gamma\approx 0.26$. Here we start a more detailed investigation of this QCP using a bosonic formulation for the effective action, where the bosons couple to the order parameter fields. To this end, we use the channel decomposition of the fermionic effective action developed in [Phys. Rev. B 79, 195125 (2009)], which allows to perform Hubbard-Stratonovich transformations for all relevant order parameter fields at any given energy scale. We stop the flow at a scale where the correlations of the order parameter field are already pronounced, but the flow is still regular, and derive the effective boson theory. It contains d-wave superconducting, magnetic, and density-density interactions. We analyze the resulting phase diagram in the mean-field approximation. We show that the singular fermionic self-energy suppresses gap formation both in the superconducting and magnetic channel already at the mean-field level, thus rounding a first-order transition (without self-energy) to a quantum phase transition (with self-energy). We give a simple effective model that shows the generality of this effect. In the two-dimensional Hubbard model, the effective density-density interaction is peaked at a nonzero frequency, so that solving the mean-field equations already involves a functional equation instead of simply a matrix equation (on a technical level, similar to incommensurate phases). Within a certain approximation, we show that such an interaction leads to a short quasiparticle lifetime. 
650 4 |a Condensed Matter - Strongly Correlated Electrons 
700 1 |a Salmhofer, Manfred  |d 1964-  |e VerfasserIn  |0 (DE-588)12037868X  |0 (DE-627)080636934  |0 (DE-576)179574744  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2018) Artikel-Nummer 1806.08930, 16 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysis 
773 1 8 |g year:2018  |g extent:16  |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysis 
856 4 0 |u http://arxiv.org/abs/1806.08930  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20181220 
993 |a Article 
998 |g 12037868X  |a Salmhofer, Manfred  |m 12037868X:Salmhofer, Manfred  |d 130000  |d 130300  |e 130000PS12037868X  |e 130300PS12037868X  |k 0/130000/  |k 1/130000/130300/  |p 2  |y j 
998 |g 1052119220  |a Veschgini, Kambis  |m 1052119220:Veschgini, Kambis  |d 130000  |d 130300  |e 130000PV1052119220  |e 130300PV1052119220  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1585789011  |e 3038834149 
BIB |a Y 
JSO |a {"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Gesehen am 06.11.2020"],"recId":"1585789011","language":["eng"],"title":[{"title_sort":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model","subtitle":"mean-field analysis","title":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model"}],"person":[{"family":"Veschgini","given":"Kambis","display":"Veschgini, Kambis","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Salmhofer, Manfred","given":"Manfred","family":"Salmhofer"}],"physDesc":[{"extent":"16 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"note":["Gesehen am 28.05.2024"],"disp":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysisArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2018) Artikel-Nummer 1806.08930, 16 Seiten","extent":"16","year":"2018"}}],"origin":[{"dateIssuedDisp":"31 Aug 2018","dateIssuedKey":"2018"}],"id":{"eki":["1585789011"]},"name":{"displayForm":["Kambis Veschgini and Manfred Salmhofer"]}} 
SRT |a VESCHGINIKLOWENERGYE3120