Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model: mean-field analysis
We complement previous functional renormalization group (fRG) studies of the two-dimensional Hubbard model by mean-field calculations. The focus falls on Van Hove filling and the the hopping amplitude t'/t=0.341. The fRG data suggest a quantum critical point (QCP) in this region and in its vici...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
31 Aug 2018
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, Volltext: http://arxiv.org/abs/1806.08930 |
| Verfasserangaben: | Kambis Veschgini and Manfred Salmhofer |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1585789011 | ||
| 003 | DE-627 | ||
| 005 | 20220815084038.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 181220s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1585789011 | ||
| 035 | |a (DE-576)515789011 | ||
| 035 | |a (DE-599)BSZ515789011 | ||
| 035 | |a (OCoLC)1341031285 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Veschgini, Kambis |e VerfasserIn |0 (DE-588)1052119220 |0 (DE-627)787846155 |0 (DE-576)407868798 |4 aut | |
| 245 | 1 | 0 | |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model |b mean-field analysis |c Kambis Veschgini and Manfred Salmhofer |
| 264 | 1 | |c 31 Aug 2018 | |
| 300 | |a 16 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 06.11.2020 | ||
| 520 | |a We complement previous functional renormalization group (fRG) studies of the two-dimensional Hubbard model by mean-field calculations. The focus falls on Van Hove filling and the the hopping amplitude t'/t=0.341. The fRG data suggest a quantum critical point (QCP) in this region and in its vicinity a singular fermionic self-energy, Im $\Sigma(\omega)/\omega \sim |\omega|^{-\gamma}$ with $\gamma\approx 0.26$. Here we start a more detailed investigation of this QCP using a bosonic formulation for the effective action, where the bosons couple to the order parameter fields. To this end, we use the channel decomposition of the fermionic effective action developed in [Phys. Rev. B 79, 195125 (2009)], which allows to perform Hubbard-Stratonovich transformations for all relevant order parameter fields at any given energy scale. We stop the flow at a scale where the correlations of the order parameter field are already pronounced, but the flow is still regular, and derive the effective boson theory. It contains d-wave superconducting, magnetic, and density-density interactions. We analyze the resulting phase diagram in the mean-field approximation. We show that the singular fermionic self-energy suppresses gap formation both in the superconducting and magnetic channel already at the mean-field level, thus rounding a first-order transition (without self-energy) to a quantum phase transition (with self-energy). We give a simple effective model that shows the generality of this effect. In the two-dimensional Hubbard model, the effective density-density interaction is peaked at a nonzero frequency, so that solving the mean-field equations already involves a functional equation instead of simply a matrix equation (on a technical level, similar to incommensurate phases). Within a certain approximation, we show that such an interaction leads to a short quasiparticle lifetime. | ||
| 650 | 4 | |a Condensed Matter - Strongly Correlated Electrons | |
| 700 | 1 | |a Salmhofer, Manfred |d 1964- |e VerfasserIn |0 (DE-588)12037868X |0 (DE-627)080636934 |0 (DE-576)179574744 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018) Artikel-Nummer 1806.08930, 16 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysis |
| 773 | 1 | 8 | |g year:2018 |g extent:16 |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysis |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1806.08930 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20181220 | ||
| 993 | |a Article | ||
| 998 | |g 12037868X |a Salmhofer, Manfred |m 12037868X:Salmhofer, Manfred |d 130000 |d 130300 |e 130000PS12037868X |e 130300PS12037868X |k 0/130000/ |k 1/130000/130300/ |p 2 |y j | ||
| 998 | |g 1052119220 |a Veschgini, Kambis |m 1052119220:Veschgini, Kambis |d 130000 |d 130300 |e 130000PV1052119220 |e 130300PV1052119220 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1585789011 |e 3038834149 | ||
| BIB | |a Y | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Gesehen am 06.11.2020"],"recId":"1585789011","language":["eng"],"title":[{"title_sort":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model","subtitle":"mean-field analysis","title":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model"}],"person":[{"family":"Veschgini","given":"Kambis","display":"Veschgini, Kambis","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Salmhofer, Manfred","given":"Manfred","family":"Salmhofer"}],"physDesc":[{"extent":"16 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"note":["Gesehen am 28.05.2024"],"disp":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysisArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2018) Artikel-Nummer 1806.08930, 16 Seiten","extent":"16","year":"2018"}}],"origin":[{"dateIssuedDisp":"31 Aug 2018","dateIssuedKey":"2018"}],"id":{"eki":["1585789011"]},"name":{"displayForm":["Kambis Veschgini and Manfred Salmhofer"]}} | ||
| SRT | |a VESCHGINIKLOWENERGYE3120 | ||